STEP 2017, P3, Q9 - Solution (2 pages; 14/7/20)

1st part

[Note that, because the partices are connected by a spring, rather than an inextensible string, the accelerations of A and B will not be constant, and so suvat cannot be used.]

Applying N2L to A: $m g-T=m \ddot{y}$,
where T is the tension in the spring.
Applying N2L to B: $T=2 m \ddot{x}$
Eliminating $T, m g-2 m \ddot{x}=m \ddot{y}$,
so that $g-2 \ddot{x}=\ddot{y}$
Then, integrating wrt t :
$g t-2 \dot{x}=\dot{y}+C$; and when $t=0, \dot{x}=\dot{y}=0$, so that $C=0$
And integrating again:
$\frac{1}{2} g t^{2}-2 x=y+D$; and when $t=0, x=y=0$, so that $D=0$
So $y+2 x=\frac{1}{2} g t^{2}$, as required.

2nd part

Taking the zero of GPE as being at the top of the table, the initial total energy is 0 (as the spring is at its natural length).

At time T :
GPE of B is 0
GPE of A is $-\operatorname{mgy}(T)=-m g\left(\frac{1}{2} g T^{2}-2 x(T)\right)$
$=-m g\left(\frac{1}{2} g\left(\frac{6 a}{g}\right)-2 a\right)$
$=-m g a$
KE of B is $\frac{1}{2}(2 m) v^{2}=m v^{2}$, where v is the speed to be found KE of A is $\frac{1}{2} m(\dot{y}(T))^{2}$,
and $y+2 x=\frac{1}{2} g t^{2} \Rightarrow \dot{y}+2 \dot{x}=g t+E$;
and when $t=0, \dot{x}=\dot{y}=0$, so that $E=0$
Hence $\dot{y}(T)+2 v=g T$,
and KE of A is $\frac{1}{2} m(g T-2 v)^{2}$
Also, Elastic PE (at time T) is: $\frac{1}{2}\left(\frac{\lambda}{a}\right)(y(T)-a)^{2}$
and $y+2 x=\frac{1}{2} g t^{2} \Rightarrow y(T)+2 a=\frac{1}{2} g\left(\frac{6 a}{g}\right)$,
so that $y(T)=a$, and EPE at time T is 0
Then $(G P E$ of $B)+($ GPE of $A)+($ KE of $B)+($ KE of $A)+E P E=0$, so that $-m g a+m v^{2}+\frac{1}{2} m(g T-2 v)^{2}=0$,
and $-2 a g+2 v^{2}+\left(g^{2} T^{2}-4 g T v+4 v^{2}\right)=0$
$\Rightarrow 6 v^{2}-4 g T v+g^{2}\left(\frac{6 a}{g}\right)-2 a g=0$
$\Rightarrow 3 v^{2}-2 g T v+2 a g=0$
$\Rightarrow v=\frac{2 g T \pm \sqrt{4 g^{2} T^{2}-24 a g}}{6}$
Then $4 g^{2} T^{2}-24 a g=4 g^{2}\left(\frac{6 a}{g}\right)-24 a g=0$,
so that $v=\frac{2 g \sqrt{6 a / g}}{6}=\sqrt{2 a g / 3}$, as required.

