STEP 2017, P3, Q3 - Solution (2 pages; 13/7/20)

1st part

$-A=(\alpha \beta+\gamma \delta)+(\alpha \gamma+\beta \delta)+(\alpha \delta+\beta \gamma)=q$,
so that $A=-q$
(i) Let $f(y)=y^{3}-3 y^{2}-40 y+(120-36)$

Then $f(2)=8-12-80+84=0$, so that $y-2$ is a factor of $f(y)$, and $f(y)=(y-2)\left(y^{2}-y-42\right)=(y-2)(y+6)(y-7)$

So, $\alpha \beta+\gamma \delta$ (the largest root of $f(y)=0$) is 7 .
(ii) 1st part
[We can try using the value of q for the 1 st result, and the value of s for the 2nd result.]
$(\alpha+\beta)(\gamma+\delta)=\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta$
$=\left\{\sum r_{i}\right\}-(\alpha \beta+\gamma \delta)$, where r_{i} are the 3 roots of the cubic $=q-7$,
as $\sum r_{i}$ is the sum of the roots of the quartic, taken 2 at a time
$=3-7=-4$

2nd part

$\alpha \beta+\gamma \delta=7 \& 10=s=(\alpha \beta)(\gamma \delta)$ (from the quartic)
and so $\alpha \beta=5 \& \gamma \delta=2$ (given that $\alpha \beta>\gamma \delta$)
(iii) $p=0 \Rightarrow \alpha+\beta+\gamma+\delta$ (1) (from the quartic)
and $r=-6 \Rightarrow \alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta=6$
(also from the quartic)
$\Rightarrow \alpha \beta(\gamma+\delta)+\gamma \delta(\alpha+\beta)=6$
Let $X=\alpha+\beta$, so that $\gamma+\delta=-X($ from (1))
Then, as $\alpha \beta=5 \& \gamma \delta=2$,
(2) $\Rightarrow 5(-X)+2 X=6$, so that $X=-2$

So $\alpha+\beta=-2 \& \alpha \beta=5$,
and $\gamma+\delta=2 \& \gamma \delta=2$
Then $\alpha \& \beta$ are the roots of $x^{2}+2 x+5=0$,
giving $x=\frac{-2 \pm \sqrt{-16}}{2}=-1 \pm 2 i$
And $\gamma \& \delta$ are the roots of $y^{2}-2 y+2=0$,
giving $y=\frac{2 \pm \sqrt{-4}}{2}=1 \pm i$
Thus the roots of the quartic are $-1 \pm 2 i \& 1 \pm i$

Notes

(i) This last part hasn't in fact used the result $(\alpha+\beta)(\gamma+\delta)=$ -4 (though this can be used as a check). However, the official mark scheme doesn't even mention $p \& r$ in part (iii).
(ii) Note that the quartic has complex roots, even though the variable is x (rather than z) - presumably so as not to give the game away.

