STEP 2017, P3, Q3 - Solution (2 pages; 13/7/20)

1st part

$$-A = (\alpha\beta + \gamma\delta) + (\alpha\gamma + \beta\delta) + (\alpha\delta + \beta\gamma) = q,$$

so that $A = -q$

(i) Let
$$f(y) = y^3 - 3y^2 - 40y + (120 - 36)$$

Then $f(2) = 8 - 12 - 80 + 84 = 0$, so that $y - 2$ is a factor of $f(y)$, and $f(y) = (y - 2)(y^2 - y - 42) = (y - 2)(y + 6)(y - 7)$
So, $\alpha\beta + \gamma\delta$ (the largest root of $f(y) = 0$) is 7.

(ii) 1st part

[We can try using the value of q for the 1st result, and the value of s for the 2nd result.]

$$(\alpha + \beta)(\gamma + \delta) = \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta$$

= {\sum r_i} - (\alpha\beta + \gam \delta), where r_i are the 3 roots of the cubic
= q - 7,

as $\sum r_i$ is the sum of the roots of the quartic, taken 2 at a time = 3 - 7 = -4

2nd part

 $\alpha\beta + \gamma\delta = 7 \& 10 = s = (\alpha\beta)(\gamma\delta)$ (from the quartic) and so $\alpha\beta = 5 \& \gamma\delta = 2$ (given that $\alpha\beta > \gamma\delta$)

(iii) $p = 0 \Rightarrow \alpha + \beta + \gamma + \delta$ (1) (from the quartic) and $r = -6 \Rightarrow \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = 6$ (also from the quartic)

 $\Rightarrow \alpha\beta(\gamma + \delta) + \gamma\delta(\alpha + \beta) = 6 \quad (2)$ Let $X = \alpha + \beta$, so that $\gamma + \delta = -X$ (from (1)) Then, as $\alpha\beta = 5 \& \gamma\delta = 2$, $(2) \Rightarrow 5(-X) + 2X = 6$, so that X = -2So $\alpha + \beta = -2 \& \alpha\beta = 5$, and $\gamma + \delta = 2 \& \gamma\delta = 2$ Then $\alpha \& \beta$ are the roots of $x^2 + 2x + 5 = 0$, giving $x = \frac{-2 \pm \sqrt{-16}}{2} = -1 \pm 2i$ And $\gamma \& \delta$ are the roots of $y^2 - 2y + 2 = 0$, giving $y = \frac{2 \pm \sqrt{-4}}{2} = 1 \pm i$

Thus the roots of the quartic are $-1 \pm 2i \& 1 \pm i$

Notes

(i) This last part hasn't in fact used the result $(\alpha + \beta)(\gamma + \delta) = -4$ (though this can be used as a check). However, the official mark scheme doesn't even mention p & r in part (iii).

(ii) Note that the quartic has complex roots, even though the variable is x (rather than z) - presumably so as not to give the game away.