STEP 2017, P3, Q12 - Solution (2 pages; 14/7/20)

(i) **1st part**

$$P(X = x) = \sum_{y=1}^{n} k(x + y)$$

$$= kxn + k \cdot \frac{1}{2}n(n + 1)$$
And $\sum_{x=1}^{n} \sum_{y=1}^{n} k(x + y) = 1$,
so that $2\{kn \cdot \frac{1}{2}n(n + 1)\} = 1$ (by symmetry),
and hence $k = \frac{1}{n^2(n+1)}$
So $P(X = x) = \frac{1}{n^2(n+1)}(xn + \frac{1}{2}n(n + 1))$
 $= \frac{2x+n+1}{2n(n+1)}$ or $\frac{n+1+2x}{2n(n+1)}$, as required.

2nd part

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

By symmetry, $P(Y = y) = \frac{n+1+2y}{2n(n+1)}$,

so that
$$\frac{P(X=x,Y=y)}{P(Y=y)} = \frac{k(x+y)}{\left(\frac{n+1+2y}{2n(n+1)}\right)}$$

X and Y independent $\Leftrightarrow P(X = x | Y = y) = P(X = x)$ for all x & y

$$\Leftrightarrow \frac{k(x+y)}{\left(\frac{n+1+2y}{2n(n+1)}\right)} = \frac{n+1+2x}{2n(n+1)}$$

[Alternatively, P(X = x | Y = y) = P(X = x) P(Y = y) can just be quoted as the condition for independence.]

$$\Leftrightarrow k(x+y)(2n(n+1))^{2} = (n+1+2x)(n+1+2y) \quad (1)$$

fmng.uk

and as
$$k = \frac{1}{n^2(n+1)}$$
; writing $N = n + 1$,
(1) $\Leftrightarrow 4(x + y)N = (N + 2x)(N + 2y)$
 $\Leftrightarrow (N - 2x)(N - 2y) = 0$,
which is only true when $x = \frac{n+1}{2}$ or $y = \frac{n+1}{2}$
As it isn't true for all $x \& y, X$ and Y are not independent.
(ii) $Cov(X,Y) = E(XY) - E(X)E(Y)$
 $E(XY) = \sum_{n=1}^{n} \sum_{y=1}^{n} k(x + y)xy$
 $= 2k\{\frac{1}{2}n(n + 1)\sum_{x=1}^{n} x^2\}$, by symmetry
 $= \frac{1}{n} \cdot \frac{1}{6}n(n + 1)(2n + 1)$, as $k = \frac{1}{n^2(n+1)}$
 $= \frac{1}{6}(n + 1)(2n + 1)$
And $E(X) = \sum_{x=1}^{n} P(X = x)x$
 $= \sum_{x=1}^{n} \frac{n+1+2x}{2n(n+1)} \cdot x$
 $= \frac{1}{2n} \cdot \frac{1}{2}n(n + 1) + \frac{1}{n(n+1)} \cdot \frac{1}{6}n(n + 1)(2n + 1)$
 $= \frac{1}{12}(3(n + 1) + 2(2n + 1))$
 $= \frac{1}{12}(7n + 5)$
And, by symmetry, $E(Y) = \frac{1}{12}(7n + 5)$ also.
So $Cov(X,Y) = \frac{1}{6}(n + 1)(2n + 1) - \frac{1}{144}(7n + 5)^2$
 $= \frac{1}{144}\{24(2n^2 + 3n + 1) - (49n^2 + 70n + 25)\}$
 $= \frac{1}{144}\{-n^2 + 2n - 1\} = -\frac{1}{144}(n - 1)^2 < 0$, as $n \ge 2$; as required