STEP 2017, P3, Q12 - Solution (2 pages; 14/7/20)
(i) 1st part
$P(X=x)=\sum_{y=1}^{n} k(x+y)$
$=k x n+k \cdot \frac{1}{2} n(n+1)$
And $\sum_{x=1}^{n} \sum_{y=1}^{n} k(x+y)=1$,
so that $2\left\{k n \cdot \frac{1}{2} n(n+1)\right\}=1$ (by symmetry),
and hence $k=\frac{1}{n^{2}(n+1)}$
So $P(X=x)=\frac{1}{n^{2}(n+1)}\left(x n+\frac{1}{2} n(n+1)\right)$
$=\frac{2 x+n+1}{2 n(n+1)}$ or $\frac{n+1+2 x}{2 n(n+1)}$, as required.

2nd part

$P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}$
By symmetry, $P(Y=y)=\frac{n+1+2 y}{2 n(n+1)}$,
so that $\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{k(x+y)}{\left(\frac{n+1+2 y}{2 n(n+1)}\right)}$
X and Y independent $\Leftrightarrow P(X=x \mid Y=y)=P(X=x)$ for all $x \& y$
$\Leftrightarrow \frac{k(x+y)}{\left(\frac{n+1+2 y}{2 n(n+1)}\right)}=\frac{n+1+2 x}{2 n(n+1)}$
[Alternatively, $P(X=x \mid Y=y)=P(X=x) P(Y=y)$ can just be quoted as the condition for independence.]
$\Leftrightarrow k(x+y)(2 n(n+1))^{2}=(n+1+2 x)(n+1+2 y)$
and as $k=\frac{1}{n^{2}(n+1)} ;$ writing $N=n+1$,
(1) $\Leftrightarrow 4(x+y) N=(N+2 x)(N+2 y)$
$\Leftrightarrow(N-2 x)(N-2 y)=0$,
which is only true when $x=\frac{n+1}{2}$ or $y=\frac{n+1}{2}$
As it isn't true for all $x \& y, \mathrm{X}$ and Y are not independent.
(ii) $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$
$E(X Y)=\sum_{x=1}^{n} \sum_{y=1}^{n} k(x+y) x y$
$=2 k\left\{\frac{1}{2} n(n+1) \sum_{x=1}^{n} x^{2}\right\}$, by symmetry
$=\frac{1}{n} \cdot \frac{1}{6} n(n+1)(2 n+1)$, as $k=\frac{1}{n^{2}(n+1)}$
$=\frac{1}{6}(n+1)(2 n+1)$
And $E(X)=\sum_{x=1}^{n} P(X=x) x$
$=\sum_{x=1}^{n} \frac{n+1+2 x}{2 n(n+1)} \cdot x$
$=\frac{1}{2 n} \cdot \frac{1}{2} n(n+1)+\frac{1}{n(n+1)} \cdot \frac{1}{6} n(n+1)(2 n+1)$
$=\frac{1}{12}(3(n+1)+2(2 n+1))$
$=\frac{1}{12}(7 n+5)$
And, by symmetry, $E(Y)=\frac{1}{12}(7 n+5)$ also.
So $\operatorname{Cov}(X, Y)=\frac{1}{6}(n+1)(2 n+1)-\frac{1}{144}(7 n+5)^{2}$
$=\frac{1}{144}\left\{24\left(2 n^{2}+3 n+1\right)-\left(49 n^{2}+70 n+25\right)\right\}$
$=\frac{1}{144}\left\{-n^{2}+2 n-1\right\}=-\frac{1}{144}(n-1)^{2}<0$, as $n \geq 2$; as required

