STEP 2017, P2, Q9 - Solution (4 pages; 18/2/21)

(i) 1st part

Create a force diagram for the left-hand cylinder (see below).

Taking moments about C, $rF_P = rF$ (as the cylinder is in rotational equilibrium), so that $F_P = F$.

Resolving forces horizontally, $Rsin\theta = F_P cos\theta + F = F(1 + cos\theta)$,

as required.

2nd part

As the plank hasn't slipped, $F_P \leq \frac{1}{2}R$, so that $\frac{F}{R} \leq \frac{1}{2}$

Then, $Rsin\theta = F(1 + cos\theta) \Rightarrow \frac{sin\theta}{1 + cos\theta} \le \frac{1}{2}$,

so that $2sin\theta \leq 1 + cos\theta$, as required.

(ii) 1st part

Resolving forces vertically,

 $W + R\cos\theta + F_P \sin\theta = N (1)$

Create a force diagram for the plank (see below).

Resolving forces vertically, $kW = 2(R\cos\theta + F_P\sin\theta)$ (2) Then, eliminating W from (1) & (2), $N - R\cos\theta - F\sin\theta = \frac{2}{k}(R\cos\theta + F_P\sin\theta)$

Then, as
$$Rsin\theta = F(1 + cos\theta)$$
,

$$N = \frac{F(1+\cos\theta)\cos\theta(1+\frac{2}{k})}{\sin\theta} + (1+\frac{2}{k})(F\sin\theta)$$

$$= \frac{F(1+\cos\theta)\left(1+\frac{2}{k}\right)}{\sin\theta} \{\cos\theta + \frac{\sin^2\theta}{(1+\cos\theta)}\}$$
$$= \frac{F(1+\cos\theta)\left(1+\frac{2}{k}\right)}{\sin\theta} \cdot \frac{\cos\theta + \cos^2\theta + \sin^2\theta}{1+\cos\theta}$$
$$= \frac{F(1+\cos\theta)\left(1+\frac{2}{k}\right)}{\sin\theta}, \text{ as required.} (3)$$

0)

2nd part

Condition for cylinder not to slip is: $F \leq \frac{1}{2}N$ or $\frac{N}{F} \geq 2$

3rd part

From (3), $\frac{N}{F} = \frac{(1+\cos\theta)\left(1+\frac{2}{k}\right)}{\sin\theta} > \frac{1+\cos\theta}{\sin\theta} \ge \frac{2\sin\theta}{\sin\theta}$ (from (i)) = 2 Thus $\frac{N}{F} \ge 2$ for all θ .

(iii)
$$1^{st}$$
 part
 $2sin\theta \le 1 + cos\theta \Rightarrow 4sin^2\theta \le 1 + cos^2\theta + 2cos\theta$ (as $sin\theta >$
 $\Rightarrow 4(1 - cos^2\theta) \le 1 + cos^2\theta + 2cos\theta$
 $\Rightarrow 5cos^2\theta + 2cos\theta - 3 \ge 0$
 $\Rightarrow (5cos\theta - 3)(cos\theta + 1) \ge 0$
 $\Rightarrow cos\theta \ge \frac{3}{5}$ (as $cos\theta > 0$, so that $cos\theta + 1 > 0$)
 $\Rightarrow sin\theta \le \sqrt{1 - (\frac{3}{5})^2} = \frac{4}{5}$

2nd part

 $rsin\theta + a = r \Rightarrow r(1 - sin\theta) = a$

fmng.uk

$$\Rightarrow \frac{a}{r} = 1 - \sin\theta \ge 1 - \frac{4}{5} = \frac{1}{5}$$

 \Rightarrow 5*a* \geq *r*, as required.