STEP 2017, P2, Q9 - Solution (4 pages; 18/2/21)
(i) $1^{\text {st }}$ part

Create a force diagram for the left-hand cylinder (see below).

Taking moments about $\mathrm{C}, r F_{P}=r F$ (as the cylinder is in rotational equilibrium), so that $F_{P}=F$.

Resolving forces horizontally, $R \sin \theta=F_{P} \cos \theta+F=F(1+$ $\cos \theta)$,
as required.

2nd part

As the plank hasn't slipped, $F_{P} \leq \frac{1}{2} R$, so that $\frac{F}{R} \leq \frac{1}{2}$
Then, $R \sin \theta=F(1+\cos \theta) \Rightarrow \frac{\sin \theta}{1+\cos \theta} \leq \frac{1}{2}$,
so that $2 \sin \theta \leq 1+\cos \theta$, as required.

(ii) $1^{\text {st }}$ part

Resolving forces vertically,
$W+R \cos \theta+F_{P} \sin \theta=N$

Create a force diagram for the plank (see below).

Resolving forces vertically,
$k W=2\left(R \cos \theta+F_{P} \sin \theta\right)(2)$
Then, eliminating W from (1) \& (2),
$N-R \cos \theta-F \sin \theta=\frac{2}{k}\left(R \cos \theta+F_{P} \sin \theta\right)$

Then, as $R \sin \theta=F(1+\cos \theta)$,
$N=\frac{F(1+\cos \theta) \cos \theta\left(1+\frac{2}{k}\right)}{\sin \theta}+\left(1+\frac{2}{k}\right)(F \sin \theta)$
$=\frac{F(1+\cos \theta)\left(1+\frac{2}{k}\right)}{\sin \theta}\left\{\cos \theta+\frac{\sin ^{2} \theta}{(1+\cos \theta)}\right\}$
$=\frac{F(1+\cos \theta)\left(1+\frac{2}{k}\right)}{\sin \theta} \cdot \frac{\cos \theta+\cos ^{2} \theta+\sin ^{2} \theta}{1+\cos \theta}$
$=\frac{F(1+\cos \theta)\left(1+\frac{2}{k}\right)}{\sin \theta}$, as required.

2nd part

Condition for cylinder not to slip is: $F \leq \frac{1}{2} N$ or $\frac{N}{F} \geq 2$

3rd part

From (3), $\frac{N}{F}=\frac{(1+\cos \theta)\left(1+\frac{2}{k}\right)}{\sin \theta}>\frac{1+\cos \theta}{\sin \theta} \geq \frac{2 \sin \theta}{\sin \theta}($ from (i)) $=2$
Thus $\frac{N}{F} \geq 2$ for all θ.

(iii) $1^{\text {st }}$ part

$$
\begin{aligned}
& 2 \sin \theta \leq 1+\cos \theta \Rightarrow 4 \sin ^{2} \theta \leq 1+\cos ^{2} \theta+2 \cos \theta(\text { as } \sin \theta>0) \\
& \Rightarrow 4\left(1-\cos ^{2} \theta\right) \leq 1+\cos ^{2} \theta+2 \cos \theta \\
& \Rightarrow 5 \cos ^{2} \theta+2 \cos \theta-3 \geq 0 \\
& \Rightarrow(5 \cos \theta-3)(\cos \theta+1) \geq 0 \\
& \Rightarrow \cos \theta \geq \frac{3}{5}(\text { as } \cos \theta>0, \text { so that } \cos \theta+1>0) \\
& \Rightarrow \sin \theta \leq \sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}
\end{aligned}
$$

2nd part

$r \sin \theta+a=r \Rightarrow r(1-\sin \theta)=a$
$\Rightarrow \frac{a}{r}=1-\sin \theta \geq 1-\frac{4}{5}=\frac{1}{5}$
$\Rightarrow 5 a \geq r$, as required.

