STEP 2017, P2, Q12 - Sol'n (2 pages; 1/6/20)
(i) $P(X+Y=r)=\sum_{i=0}^{r} P(X=i) P(Y=r-i)$
(as $X \& Y$ are independent, $P(X=i \& Y=r-i)$
$=P(X=i) P(Y=r-i))$
$=\sum_{i=0}^{r} \frac{e^{-\lambda} \lambda^{i}}{i!} \cdot \frac{e^{-\mu} \mu^{r-i}}{(r-i)!}=\frac{e^{-(\lambda+\mu)}}{r!} \sum_{i=0}^{r}\binom{r}{i} \lambda^{i} \mu^{r-i}$
$=\frac{e^{-(\lambda+\mu)}}{r!}(\lambda+\mu)^{r}$, so that $X+Y \sim \operatorname{Po}(\lambda+\mu)$
(ii) $P(X=r \mid X+Y=k)=\frac{P(X=r \& X+Y=k)}{P(X+Y=k)}$
$=\frac{P(X=r) P(Y=k-r)}{P(X+Y=k)}$ (as $X \& Y$ are independent)
$=\frac{\left(\frac{e^{-\lambda} \lambda^{r}}{r!}\right)\left(\frac{e^{-\mu_{\mu} k-r}}{(k-r)!}\right)}{\left(\frac{e^{-(\lambda+\mu)}(\lambda+\mu)^{k}}{k!}\right)}=\frac{\lambda^{r} \mu^{k-r}}{(\lambda+\mu)^{k}}\binom{k}{r}$
$=\left(\frac{\lambda}{\lambda+\mu}\right)^{r}\left(\frac{\mu}{\lambda+\mu}\right)^{k-r}\binom{k}{r}$,
so that $X \left\lvert\, X+Y=k \sim B\left(k, \frac{\lambda}{\lambda+\mu}\right)\right.$
(iii) [The official sol'n seems to be glossing over the complications in this part, and just applies the result of part (ii) with $k=1$]

Suppose that Adam and Eve are interupted in their fishing at some random point t, and they happen to have caught one fish between them. [We can't just stop them as soon as they have caught one fish, as this is adding a further condition, with the problem becoming "Given that Adam and Eve catch a total of k fish in time T, with the last one being caught at time $T \ldots$...]

Then the Poisson parameters for Adam and Eve are $\frac{t}{T} \lambda \& \frac{t}{T} \mu$, respectively.

And from (ii), the number of fish caught by Adam
$\sim B\left(1, \frac{\left(\frac{t}{T} \lambda\right)}{\left(\frac{t}{T} \lambda+\left(\frac{t}{T} \mu\right)\right)}\right) ;$ ie $B\left(1, \frac{\lambda}{\lambda+\mu}\right)$,
so that $P(1$ st fish has been caught by Adam $)=\frac{\lambda}{\lambda+\mu}$
(iv) [The time until the next event follows an exponential distribution, with $\operatorname{pdf} f(x)=\lambda e^{-\lambda x}$.]

Expected time $=$ Expected time until A\&E catch their 1st fish
$+\mathrm{P}($ A catches the 1st fish $) \times$ Expected time until E catches her 1st fish [from when A catches his 1st fish]
$+\mathrm{P}(\mathrm{E}$ catches the 1 st fish $) \times$ Expected time until A catches his 1st fish [from when E catches her 1st fish]
$=\frac{1}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu}\left(\frac{1}{\mu}\right)+\frac{\mu}{\lambda+\mu}\left(\frac{1}{\lambda}\right)$
$=\frac{\lambda \mu+\lambda^{2}+\mu^{2}}{(\lambda+\mu) \lambda \mu}$
[This can be shown to equal $\frac{1}{\lambda}+\frac{1}{\mu}-\frac{1}{\lambda+\mu}$, as per the official sol'n (alternatively, the 1 st line of the official sol'n can be seen to equal the 1st line above).]

