STEP 2017, P2, Q10 - Solution (3 pages; 27/5/20)

1st part

Let $F(x)$ be the force applied by the engine.
Then, by N2L, $F(x)-A v^{2}-R=m a$,
and the work done by the engine is $\int_{0}^{d} F(x) d x$
$=\int_{0}^{d}\left(m a+R+A v^{2}\right) d x$, as required.

2nd part

$\frac{d v}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}=a \cdot \frac{1}{v}$, and so $d x=d v \cdot \frac{v}{a}$
When $x=0, v=0$,
and $^{\prime} v^{2}=u^{2}+2 a s^{\prime} \Rightarrow v=\sqrt{2 a d}=w$ when $x=d$
Then $\int_{0}^{d}\left(m a+R+A v^{2}\right) d x=\int_{0}^{w} \frac{\left(m a+R+A v^{2}\right) v}{a} d v$, as required.
(i) Work done for the 2 nd half is $\int_{w}^{w_{1}} \frac{\left(-m a+R+A v^{2}\right) v}{-a} d v$,
where $w_{1}{ }^{2}=w^{2}+2(-a) d=2 a d-2 a d=0$
So work done for 2nd half

$$
\begin{aligned}
& =\left[\frac{1}{2}\left(m-\frac{R}{a}\right) v^{2}-\frac{A v^{4}}{4 a}\right]_{w}^{0} \\
& =\frac{1}{2}\left(m-\frac{R}{a}\right)\left(0-w^{2}\right)-\frac{A}{4 a}\left(0-w^{4}\right) \\
& =\frac{1}{2}\left(m-\frac{R}{a}\right)(-2 a d)+\frac{A}{4 a}(2 a d)^{2} \\
& =-m a d+R d+A a d^{2}
\end{aligned}
$$

Work done for the 1 st half is $\left[\frac{1}{2}\left(m+\frac{R}{a}\right) v^{2}+\frac{A v^{4}}{4 a}\right]_{0}^{W}$
$=\frac{1}{2 a}(m a+R)(2 a d)+\frac{A(2 a d)^{2}}{4 a}$
$=(m a+R) d+A a d^{2}$
So total work done is
$\left(-m a d+R d+A a d^{2}\right)+(m a+R) d+A a d^{2}$
$=2 A a d^{2}+2 R d$, as required .

Note that, for the 1 st half of the journey,
$F(x)=m a+R+A v^{2}>0($ as $A \& R$ must be positive)
And for the 2 nd half of the journey,

$$
F(x)=-m a+R+A v^{2}>0, \text { as } R>m a
$$

So the engine is doing positive work at all times.
(ii) $F(x)$ falls to zero (during the 2nd half of the journey) when $-m a+R+A v^{2}=0 ;$
ie when $A v^{2}=m a-R$, and $v=\sqrt{\frac{m a-R}{A}}$ (which is defined, as $R<m a)$

In order for the speed to equal $\sqrt{\frac{m a-R}{A}}$ at some point,
$\sqrt{\frac{m a-R}{A}}<w=\sqrt{2 a d}$,
so that $\frac{m a-R}{A}<2 a d ; m a-R<2 A a d$, and $R>m a-2 A a d$
(as given).
Let $w^{\prime}=\sqrt{\frac{m a-R}{A}}$
Then work done for the whole journey
$=(m a+R) d+A a d^{2}[$ from (i)]
$+\left[\frac{1}{2}\left(m-\frac{R}{a}\right) v^{2}-\frac{A v^{4}}{4 a}\right]_{w}^{w^{\prime}}[$ also from (i) $]$
$=(m a+R) d+A a d^{2}$
$+\left\{\frac{1}{2}\left(m-\frac{R}{a}\right)\left(\frac{m a-R}{A}\right)-\frac{A}{4 a}\left(\frac{m a-R}{A}\right)^{2}-\frac{1}{2}\left(m-\frac{R}{a}\right)(2 a d)+\frac{A}{4 a}(2 a d)^{2}\right\}$
$=(m a+R) d+A a d^{2}+\frac{(m a-R)^{2}}{A a}\left(\frac{1}{2}-\frac{1}{4}\right)-m a d+R d+A a d^{2}$
$=2 R d+2 A a d^{2}+\frac{(m a-R)^{2}}{4 A a}$, as required.

