STEP 2017, P1, Q13 - Solution (4 pages; 18/2/21)

1st part

$s_{1}=0$
2nd part
$\mathrm{t}_{\mathrm{r}}=P((\mathrm{r}-1)$ st slice is used for 1 st half of sandwich $)$
\times (P (rth slice is used for toast|
($\mathrm{r}-1$)st is used for 1 st half of sandwich)
$+\mathrm{s}_{\mathrm{r}-1} \mathrm{P}(\mathrm{rth}$ slice is used for toast|
($\mathrm{r}-1$)st is used for 2 nd half of sandwich)
$+\mathrm{t}_{\mathrm{r}-1} \mathrm{P}$ (rth slice is used for toast|
($\mathrm{r}-1$) st is used for toast)
$=P((r-1)$ st slice is used for 1 st half of sandwich $) \times 0$
$+\mathrm{s}_{\mathrm{r}-1} p+\mathrm{t}_{\mathrm{r}-1} p$
$=\left(\mathrm{s}_{\mathrm{r}-1}+\mathrm{t}_{\mathrm{r}-1}\right) p$ for $2 \leq r \leq n-1$
($r \neq 1$, as s_{0} and t_{0} aren't defined; for $r=n$, the probabilities are different)
$s_{r}=P((r-1)$ st slice is used for 1 st half of sandwich $)$
$=1-\left(\mathrm{s}_{\mathrm{r}-1}+\mathrm{t}_{\mathrm{r}-1}\right)$ for $2 \leq r \leq n$
(again, $r \neq 1$, as s_{0} and t_{0} aren't defined)

Substituting from the $1^{\text {st }}$ eq'n into the $2^{\text {nd }}: s_{r}=1-\frac{t_{r}}{p}$
Hence $s_{r-1}=1-\frac{t_{r-1}}{p}$ for $2 \leq r-1 \leq n-1$; ie for $3 \leq r \leq n$, so that $t_{r-1}=p\left(1-s_{r-1}\right)$

Then, substituting into the $2^{\text {nd }} e q^{\prime} n$:
$s_{r}=1-s_{r-1}-p\left(1-s_{r-1}\right)$
$=(1-p)-s_{r-1}(1-p)=q\left(1-s_{r-1}\right)$ for $3 \leq r \leq n-1$,
as the $1^{\text {st }} \mathrm{eq}$ ' n was limited to $r \leq n-1$
We also need to show that $s_{2}=q\left(1-s_{1}\right)=q$,
but this follows from the fact that the $2^{\text {nd }}$ side of the sandwich will be made straightaway if the $1^{\text {st }}$ has just been made (and there is probability q that a sandwich is started with the $1^{\text {st }}$ slice of bread).

So $s_{r}=q\left(1-s_{r-1}\right)$ for $2 \leq r \leq n-1$, as required.

4th part

Proof by induction:
$s_{1}=0$ and $\frac{q+(-q)^{1}}{1+q}=0 ;$ so the result holds for $n=1$
Assume that it holds for $n=k$, so that $s_{k}=\frac{q+(-q)^{k}}{1+q}$
Then $s_{k+1}=q\left(1-s_{k}\right)$ for $2 \leq k+1 \leq n-1$; ie $1 \leq k \leq n-2$
$=q-\frac{q\left[q+(-q)^{k}\right]}{1+q}$
$=\frac{1}{1+q}\left\{q(1+q)-q^{2}+(-q)^{k+1}\right\}$
$=\frac{q+(-q)^{k+1}}{1+q}$
Thus, if the result is true for $n=k$, it will be true for $n=k+1$, provided that $1 \leq k \leq n-2$

As the result is true for $n=1$, it follows by the principle of induction that it will be true for $1 \leq k \leq n-1$, as required.

$5^{\text {th }}$ part

From the start of the $3^{\text {rd }}$ part, $s_{r}=1-\frac{t_{r}}{p}$ (for $2 \leq r \leq n-1$, as it is based on both of the given eq'ns),
so that $t_{r}=p\left(1-s_{r}\right)=\frac{p}{1+q}\left\{(1+q)-\left[q+(-q)^{r}\right]\right\}$
$=\frac{p}{1+q}\left\{1-(-q)^{r}\right\}$ for $2 \leq r \leq n-1$
Also, $t_{1}=p$ and $\frac{p}{1+q}\left\{1-(-q)^{1}\right\}=p$,
so that $t_{r}=\frac{p}{1+q}\left\{1-(-q)^{r}\right\}$ for $1 \leq r \leq n-1$

$6^{\text {th }}$ part

From the $2^{\text {nd }}$ of the given eq'ns,
$s_{r}=1-\left(\mathrm{s}_{\mathrm{r}-1}+\mathrm{t}_{\mathrm{r}-1}\right)$ for $2 \leq r \leq n$,
so that $s_{n}=1-\left(s_{n-1}+t_{n-1}\right)$

$$
\begin{aligned}
& =1-\frac{q+(-q)^{n-1}}{1+q}-\frac{p}{1+q}\left\{1-(-q)^{n-1}\right\} \\
& =\frac{1}{1+q}\left\{(1+q)-\left[q+(-q)^{n-1}\right]-p\left[1-(-q)^{n-1}\right]\right\} \\
& =\frac{1}{1+q}\left\{q-q(-q)^{n-1}\right\} \\
& =\frac{1}{1+q}\left\{q+(-q)^{n}\right\}
\end{aligned}
$$

Also, $t_{n}=P((\mathrm{n}-1)$ st slice is used for 1 st half of sandwich $)$
\times (P (nth slice is used for toast|
($n-1$)st is used for 1 st half of sandwich)
$+\mathrm{s}_{\mathrm{n}-1} \mathrm{P}$ (nth slice is used for toast|
($\mathrm{n}-1$)st is used for 2 nd half of sandwich)
$+\mathrm{t}_{\mathrm{n}-1} \mathrm{P}$ (nth slice is used for toast|
($\mathrm{n}-1$)st is used for toast)
$=P((\mathrm{n}-1)$ st slice is used for 1 st half of sandwich $) \times 0$
$+\left(\mathrm{s}_{\mathrm{n}-1} \times 1\right)+\left(\mathrm{t}_{\mathrm{n}-1} \times 1\right)$
$=\mathrm{s}_{\mathrm{n}-1}+\mathrm{t}_{\mathrm{n}-1}$
$=\frac{1}{1+q}\left\{q+(-q)^{n-1}\right\}+\frac{p}{1+q}\left\{1-(-q)^{n-1}\right\}$
$=\frac{1}{1+q}\left\{(q+p)+(1-p)(-q)^{n-1}\right\}$
$=\frac{1}{1+q}\left\{1+q(-q)^{n-1}\right\}$
$=\frac{1}{1+q}\left\{1-(-q)^{n}\right\}$

