STEP 2017, P1, Q13 - Solution (4 pages; 18/2/21)

1st part

 $s_1 = 0$

2nd part

 $t_r = P((r-1)st$ slice is used for 1st half of sandwich)

 \times (P(rth slice is used for toast)

(r-1)st is used for 1st half of sandwich)

 $+s_{r-1}P($ rth slice is used for toast|

(r-1)st is used for 2nd half of sandwich)

 $+ t_{r-1}P(rth slice is used for toast)$

(r-1)st is used for toast)

= P((r-1)st slice is used for 1st half of sandwich) $\times 0$

$$+s_{r-1}p + t_{r-1}p$$

 $= (s_{r-1} + t_{r-1})p \text{ for } 2 \le r \le n-1$

 $(r \neq 1, \text{ as } s_0 \text{ and } t_0 \text{ aren't defined; for } r = n$, the probabilities are different)

 $s_r = P((r - 1)$ st slice is used for 1st half of sandwich) = $1 - (s_{r-1} + t_{r-1})$ for $2 \le r \le n$

(again, $r \neq 1$, as s₀ and t₀ aren't defined)

3rd part

Substituting from the 1st eq'n into the 2nd: $s_r = 1 - \frac{t_r}{p}$

Hence
$$s_{r-1} = 1 - \frac{t_{r-1}}{p}$$
 for $2 \le r - 1 \le n - 1$; ie for $3 \le r \le n$,

so that
$$t_{r-1} = p(1 - s_{r-1})$$

Then, substituting into the 2nd eq'n:

$$s_r = 1 - s_{r-1} - p(1 - s_{r-1})$$

= $(1 - p) - s_{r-1}(1 - p) = q(1 - s_{r-1})$ for $3 \le r \le n - 1$,
as the 1st eq'n was limited to $r \le n - 1$

We also need to show that $s_2 = q(1 - s_1) = q$,

but this follows from the fact that the 2^{nd} side of the sandwich will be made straightaway if the 1^{st} has just been made (and there is probability q that a sandwich is started with the 1^{st} slice of bread).

So $s_r = q(1 - s_{r-1})$ for $2 \le r \le n - 1$, as required.

4th part

Proof by induction:

$$s_1 = 0$$
 and $\frac{q+(-q)^1}{1+q} = 0$; so the result holds for $n = 1$

Assume that it holds for n = k, so that $s_k = \frac{q + (-q)^k}{1+q}$

Then $s_{k+1} = q(1 - s_k)$ for $2 \le k + 1 \le n - 1$; ie $1 \le k \le n - 2$

$$= q - \frac{q[q+(-q)^{k}]}{1+q}$$
$$= \frac{1}{1+q} \{q(1+q) - q^{2} + (-q)^{k+1}\}$$

fmng.uk

$$=\frac{q+(-q)^{k+1}}{1+q}$$

Thus, if the result is true for n = k, it will be true for n = k + 1, provided that $1 \le k \le n - 2$

As the result is true for n = 1, it follows by the principle of induction that it will be true for $1 \le k \le n - 1$, as required.

5th part

From the start of the 3rd part, $s_r = 1 - \frac{t_r}{p}$ (for $2 \le r \le n - 1$, as it is based on both of the given eq'ns),

so that $t_r = p(1 - s_r) = \frac{p}{1+q} \{ (1+q) - [q+(-q)^r] \}$ $= \frac{p}{1+q} \{ 1 - (-q)^r \} \text{ for } 2 \le r \le n-1$ Also, $t_1 = p$ and $\frac{p}{1+q} \{ 1 - (-q)^1 \} = p$, so that $t_r = \frac{p}{1+q} \{ 1 - (-q)^r \} \text{ for } 1 \le r \le n-1$

6th part

From the 2nd of the given eq'ns,

$$s_{r} = 1 - (s_{r-1} + t_{r-1}) \text{ for } 2 \le r \le n,$$

so that $s_{n} = 1 - (s_{n-1} + t_{n-1})$
$$= 1 - \frac{q + (-q)^{n-1}}{1+q} - \frac{p}{1+q} \{1 - (-q)^{n-1}\}$$

$$= \frac{1}{1+q} \{(1+q) - [q + (-q)^{n-1}] - p[1 - (-q)^{n-1}]\}$$

$$= \frac{1}{1+q} \{q - q(-q)^{n-1}\}$$

$$= \frac{1}{1+q} \{q + (-q)^{n}\}$$

Also, $t_n = P((n-1)$ st slice is used for 1st half of sandwich)

- \times (P(nth slice is used for toast)
- (n-1)st is used for 1st half of sandwich)
- $+s_{n-1}P(nth slice is used for toast|$
- (n 1)st is used for 2nd half of sandwich)
- + $t_{n-1}P(nth slice is used for toast|$
- (n-1)st is used for toast)
- = P((n-1)st slice is used for 1st half of sandwich) $\times 0$

$$+(s_{n-1} \times 1) + (t_{n-1} \times 1)$$

$$= s_{n-1} + t_{n-1}$$

= $\frac{1}{1+q} \{ q + (-q)^{n-1} \} + \frac{p}{1+q} \{ 1 - (-q)^{n-1} \}$
= $\frac{1}{1+q} \{ (q+p) + (1-p)(-q)^{n-1} \}$

$$= \frac{1}{1+q} \{ 1 + q(-q)^{n-1} \}$$

$$=\frac{1}{1+q}\{1-(-q)^n\}$$