STEP 2016, Paper 1, Q11 - Solution (2 pages; 24/2/21)

1st part

The height above the base, $y=h+u \sin \alpha . t-\frac{1}{2} g t^{2}$, where t is the time from firing.

The horizontal distance travelled, $X=u \cos \alpha . t$
P hits the plain when $y=0$,
so that, substituting for t, and setting $X=x$,
$h+u \sin \alpha \cdot \frac{x}{u \cos \alpha}-\frac{1}{2} g\left(\frac{x}{u \cos \alpha}\right)^{2}=0$
$\Rightarrow \frac{g x^{2}}{u^{2}}=2 h \cos ^{2} \alpha+2 x \sin \alpha \cos \alpha$
$=h(1+\cos (2 \alpha))+x \sin (2 \alpha)$, as required (1)
$2{ }^{\text {nd }}$ part
Differentiating (1) wrt α :
$\frac{2 g x}{u^{2}} \frac{d x}{d \alpha}=-2 h \sin (2 \alpha)+\frac{d x}{d \alpha} \sin (2 \alpha)+2 x \cos (2 \alpha)$
x is maximised (or minimised) when $\frac{d x}{d \alpha}=0$
$\Rightarrow 0=-2 h \sin (2 \alpha)+2 x \cos (2 \alpha)$
$\Rightarrow x=h \tan (2 \alpha)$, as required.
[Note: We could attempt to show that $\frac{d^{2} x}{d \alpha^{2}}<0$, to justify the maximum, but this turns out to be difficult. Normally the Official Sol'ns would require this to be done, but not for this question!]

$3^{\text {rd }}$ part

Substituting $x=h \tan (2 \alpha)$ into (1) gives
$\frac{g h^{2} \tan ^{2}(2 \alpha)}{u^{2}}=h(1+\cos (2 \alpha))+h \tan (2 \alpha) \sin (2 \alpha)$
$\Rightarrow \frac{g h \sin ^{2}(2 \alpha)}{u^{2} \cos ^{2}(2 \alpha)}=(1+\cos (2 \alpha))+\frac{\sin ^{2}(2 \alpha)}{\cos (2 \alpha)}$
Writing $A=\cos (2 \alpha),(2) \Rightarrow \frac{g h\left(1-A^{2}\right)}{u^{2} A^{2}}=1+A+\frac{\left(1-A^{2}\right)}{A}=1+\frac{1}{A}$
Writing $k=\frac{g h}{u^{2}}, k\left(1-A^{2}\right)=A^{2}+A$,
so that $A^{2}(k+1)+A-k=0$
$\Rightarrow A=\frac{-1 \pm \sqrt{1+4(k+1) k}}{2(k+1)}=\frac{-1 \pm(2 k+1)}{2(k+1)}=\frac{k}{k+1}$ or -1
$A=-1 \Rightarrow \alpha=\frac{\pi}{2}$, which can be rejected (as P is then fired vertically)

So $\cos (2 \alpha)=\frac{k}{k+1}=\frac{\left(\frac{g h}{u^{2}}\right)}{\left(\frac{g h}{u^{2}}\right)+1}=\frac{g h}{g h+u^{2}}$

4th part

The greatest distance between 0 and the landing point occurs when $x=h \tan (2 \alpha)$ and $\cos (2 \alpha)=\frac{g h}{g h+u^{2}}$

This greatest distance is then $\sqrt{h^{2}+x^{2}}$
$=h \sqrt{1+\tan ^{2}(2 \alpha)}=h \sec (2 \alpha)=\frac{h\left(g h+u^{2}\right)}{g h}=h+\frac{u^{2}}{g}$, as required.

