STEP 2015, P3, Q6 - Solution (4 pages; 29/7/20)
(i) Eliminating $z, v=w^{2}+(u-w)^{2}$,
so that $2 w^{2}-2 u w+u^{2}-v=0$
and $w=\frac{2 u \pm \sqrt{4 u^{2}-8\left(u^{2}-v\right)}}{4}=\frac{u \pm \sqrt{2 v-u^{2}}}{2}$
By symmetry, if $w=\frac{u+\sqrt{2 v-u^{2}}}{2}$, then $z=\frac{u-\sqrt{2 v-u^{2}}}{2}$ (and viceversa).

Thus if $u \& v$ are real, and $u^{2} \leq 2 v$, then $w \& z$ will be real.

Now, $2 v-u^{2}=2\left(w^{2}+z^{2}\right)-\left(w^{2}+z^{2}+2 w z\right)$
$=w^{2}+z^{2}-2 w z$
$=(w-z)^{2}$
So if $w \& z$ are real, then $u \& v$ will be real (from their definitions), and $2 v-u^{2}=(w-z)^{2} \geq 0$, so that $u^{2} \leq 2 v$.

Alternative method

$$
\begin{aligned}
& 2 v-u^{2}=2\left(w^{2}+z^{2}\right)-\left(w^{2}+z^{2}+2 w z\right) \\
& =w^{2}+z^{2}-2 w z \\
& =(w-z)^{2}
\end{aligned}
$$

If $w \& z$ are real, then $u \& v$ will be real, and $2 v-u^{2} \geq 0$, so that $u^{2} \leq 2 v$

Suppose now that $u \& v$ are real, and $u^{2} \leq 2 v$, so that $(w-z)^{2}$ is a non-negative real number.

Now, if $\left(r e^{i \theta}\right)^{2}=r^{2} e^{2 \theta i}$ is a non-negative real number, then
$2 \theta=n(2 \pi)$, for some integer n, and so $\theta=n \pi$, and therefore $r e^{i \theta}$ is a real number.

So $w-z$ is a real number, a say.
Then, as $u=w+z$ is a real number, b say, $w=\frac{1}{2}(a+b) \& z=\frac{1}{2}(b-a)$ are both real.

(ii) 1st part

From the 1 st eq'n, $u=w+z$
Let $v=w^{2}+z^{2}$. Then, from the 2nd eq'n:
$2 v-u^{2}=2\left(w^{2}+z^{2}\right)-u^{2}=2\left(u^{2}-\frac{2}{3}\right)-u^{2}$
$=u^{2}-\frac{4}{3}$
So, if $u^{2}<\frac{4}{3}$, then $w \& z$ will not be real (for the 2 nd part).
Now $w^{3}+z^{3}=(w+z)\left(w^{2}-w z+z^{2}\right)$
[Note that, if we write $f(w)=w^{3}+z^{3}$, then $f(-z)=0$, so that $w+z$ is a factor, by the Factor theorem.]

Then the 3rd eq' n becomes
$u\left(\left[u^{2}-\frac{2}{3}\right]-w z\right)-\lambda u=-\lambda(\mathrm{A})$, from the 1 st $\& 2 \mathrm{nd}$ eq'ns
Also, $2 w z=(w+z)^{2}-\left(w^{2}+z^{2}\right)$
$=u^{2}-\left[u^{2}-\frac{2}{3}\right]$, from the 1 st $\& 2$ nd eq'ns
$=\frac{2}{3}$, so that $w Z=\frac{1}{3}$
Then (A) becomes $u\left(u^{2}-1-\lambda\right)+\lambda=0$
or $f(u)=u^{3}-(1+\lambda) u+\lambda=0$
[See the official Hints \& Sol'ns for a quicker method, using the fact that $f(u)=u\left(u^{2}-1\right)-\lambda(u-1)$, so that $u-1$ is a factor.]

In order for there to be 3 possible (real) values of u, we need to show that the minimum of $f(u)$ lies below the u-axis (for all positive values of λ except one).
$f^{\prime}(u)=3 u^{2}-(1+\lambda)$,
so that $f^{\prime}(u)=0 \Rightarrow u^{2}=\frac{1+\lambda}{3}$
The minimum then occurs at the right-most value; ie $u=\sqrt{\frac{1+\lambda}{3}}$ and we require $f\left(\sqrt{\frac{1+\lambda}{3}}\right)<0$ for all positive values of λ except one.
ie $\sqrt{\frac{1+\lambda}{3}}\left\{\left(\frac{1+\lambda}{3}\right)-(1+\lambda)\right\}+\lambda<0$
$\Leftrightarrow-\frac{2}{3}(1+\lambda) \sqrt{\frac{1+\lambda}{3}}<-\lambda$
$\Leftrightarrow \frac{2}{3}(1+\lambda) \sqrt{\frac{1+\lambda}{3}}>\lambda$
$\Leftrightarrow \frac{4}{9}(1+\lambda)^{2}\left(\frac{1+\lambda}{3}\right)>\lambda^{2}$, as $a^{2}>b^{2} \Rightarrow a>b$ when $b>0$
$\Leftrightarrow 4(1+\lambda)^{3}>27 \lambda^{2}$
$\Leftrightarrow g(\lambda)=4 \lambda^{3}-15 \lambda^{2}+12 \lambda+4>0$
As we are told that $g(\lambda) \leq 0$ for just one positive value of λ (say λ_{0}, it follows that λ_{0} is a repeated root of $g(\lambda)=0$, and we can see that $g(2)=32-60+24+4=0$

Then $g(\lambda)=(\lambda-2)\left(4 \lambda^{2}-7 \lambda-2\right)=(\lambda-2)(\lambda-2)(4 \lambda+1)$
Thus $g(\lambda)$ has a root at $\lambda=-\frac{1}{4}$ and a repeated root at $\lambda=2$, and therefore $g(\lambda)>0$ for all positive values of λ except one; namely $\lambda=2$.

2nd part

It was shown at the start of the 1 st part that, if $u^{2}<\frac{4}{3}$, then $w \& z$ will not be real.
[We just need to find one solution for the eq'ns such that $w \& z$ are not real.]

Consider $f(u)=u^{3}-(1+\lambda) u+\lambda=0$ again,
and note that $f(1)=0$ (for any λ in fact).
So suppose that $u=1$ (so that $u^{2}<\frac{4}{3}$).
Then $w+z=1$, and $w z=\frac{1}{3}$, as before,
so that $w+\frac{1}{3 w}=1$, and hence $3 w^{2}-3 w+1=0$,
giving $w=\frac{3 \pm \sqrt{9-12}}{6}$
By symmetry, if $w=\frac{3+i \sqrt{3}}{6}$, then $z=\frac{3-i \sqrt{3}}{6}$, which is the required counter-example.

