STEP 2015, P3, Q13 - Solution (5 pages; 9/3/21)
(i) 1st part

All possible points (x, y) are contained in the square of base 1 , and are equally likely.

Referring to the diagrams,
the CDF, $P(X+Y \leq T)=\frac{\frac{1}{2} T^{2}}{1}=\frac{1}{2} T^{2}$ for $0 \leq T \leq 1$,

$$
\begin{aligned}
& =\frac{1-\frac{1}{2} d^{2}}{1} \text { for } 1 \leq T \leq 2 \\
& =0 \text { otherwise }
\end{aligned}
$$

And $d=1-(T-1)=2-T$,
so that $1-\frac{1}{2} d^{2}=1-\frac{1}{2}(2-T)^{2}=2 T-\frac{1}{2} T^{2}-1$
and $P(X+Y \leq T)=0$ for $T<0$

$$
\begin{aligned}
& =\frac{1}{2} T^{2} \text { for } 0 \leq T \leq 1 \\
& =2 T-\frac{1}{2} T^{2}-1 \text { for } 1 \leq T \leq 2 \\
& =1 \text { for } T>2
\end{aligned}
$$

[On reflection, a lower case letter probably would have been better here; say v instead of T, as upper case letters tend to be reserved for random variables. (T was being used to avoid confusion with the t in the next part.)]

2nd part

Hence $F(t)=P\left(\frac{1}{X+Y} \leq t\right)=P\left(X+Y \geq \frac{1}{t}\right)$
$=1-P\left(X+Y<\frac{1}{t}\right)$
$=1-\frac{1}{2}\left(\frac{1}{t}\right)^{2}$ for $0 \leq \frac{1}{t} \leq 1 \quad\left(\right.$ as $\left.P\left(X+Y<\frac{1}{t}\right)=P\left(X+Y \leq \frac{1}{t}\right)\right)$
$=1-\left\{2\left(\frac{1}{t}\right)-\frac{1}{2}\left(\frac{1}{t}\right)^{2}-1\right\}$ for $1 \leq \frac{1}{t} \leq 2$
$=1$ for $\frac{1}{t}>2$
ie $1-\frac{1}{2 t^{2}}$ for $1 \leq t<\infty$
$=2-\frac{2}{t}+\frac{1}{2 t^{2}}$ for $\frac{1}{2} \leq t \leq 1$
$=0$ otherwise

Then $f(t)=F^{\prime}(t)=2 t^{-2}-t^{-3}$ for $\frac{1}{2} \leq t \leq 1$

$$
\begin{aligned}
& =t^{-3} \text { for } 1 \leq t<\infty \\
& =0 \text { otherwise, as required. }
\end{aligned}
$$

3rd part

$$
E\left(\frac{1}{X+Y}\right)=\int_{\frac{1}{2}}^{1} t\left(2 t^{-2}-t^{-3}\right) d t+\int_{1}^{\infty} t . t^{-3} d t
$$

$=\left[2 \ln t+\frac{1}{t}\right]_{\frac{1}{2}}^{1}+\left[-\frac{1}{t}\right]_{1}^{\infty}$
$=(0+1)-(-2 \ln 2+2)+(0)-(-1)$
$=2 \ln 2$

(ii) 1st part

Referring to the diagrams,
$P\left(\frac{Y}{X} \leq T\right)=\frac{1}{2}(1) T=\frac{T}{2}$ for $0 \leq T \leq 1$
$=1-\frac{1}{2}(1)\left(\frac{1}{T}\right)=1-\frac{1}{2 T}$ for $T>1$

2nd part

$\left.P\left(\frac{X}{X+Y} \leq t\right)=P\left(\frac{1}{1+\frac{Y}{X}}\right) \leq t\right)=P\left(1+\frac{Y}{X} \geq \frac{1}{t}\right)=P\left(\frac{Y}{X} \geq \frac{1}{t}-1\right)$
$=1-P\left(\frac{Y}{X} \leq \frac{1}{t}-1\right)$
From the 1st part, this
$=1-\frac{\left(\frac{1}{t}-1\right)}{2}$ for $0 \leq \frac{1}{t}-1 \leq 1$
$\& \frac{1}{2\left(\frac{1}{t}-1\right)}$ for $\frac{1}{t}-1>1$
ie $\frac{2 t-(1-t)}{2 t}$ for $1 \leq \frac{1}{t} \leq 2$
$\& \frac{t}{2(1-t)}$ for $\frac{1}{t}>2$
ie $\frac{t}{2(1-t)}$ for $0 \leq t<\frac{1}{2}$
$\& \frac{3 t-1}{2 t}$ for $\frac{1}{2} \leq t \leq 1$
(noting that $\frac{X}{X+Y}$ cannot be negative or greater than 1)

Differentiating wrt t, the pdf of $\frac{X}{X+Y}$ is
$\frac{1}{2} \frac{d}{d t}\left(\frac{t-1}{1-t}+\frac{1}{1-t}\right)=\frac{1}{2}(1-t)^{-2}$ for $0 \leq t<\frac{1}{2}$,
$\frac{d}{d t}\left(\frac{3}{2}-\frac{1}{2 t}\right)=\frac{1}{2} t^{-2}$ for $\frac{1}{2} \leq t \leq 1$,
and 0 otherwise

3rd part

$E\left(\frac{X}{X+Y}\right)+E\left(\frac{Y}{X+Y}\right)=E\left(\frac{X+Y}{X+Y}\right)=E(1)=1$
By symmetry, $E\left(\frac{X}{X+Y}\right)=E\left(\frac{Y}{X+Y}\right)$, so that $E\left(\frac{X}{X+Y}\right)=\frac{1}{2}$

4th part

$$
\begin{aligned}
& E\left(\frac{X}{X+Y}\right)=\int_{0}^{\frac{1}{2}} t \cdot \frac{1}{2}(1-t)^{-2} d t+\int_{\frac{1}{2}}^{1} t \cdot \frac{1}{2} t^{-2} d t \\
& =\frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{t-1}{(1-t)^{2}}+\frac{1}{(1-t)^{2}} d t+\frac{1}{2}[\ln t]_{\frac{1}{2}}^{1} \\
& =\frac{1}{2}\left[\ln (1-t)+(1-t)^{-1}\right]^{\frac{1}{2}}+\frac{1}{2}(0+\ln 2) \\
& =\frac{1}{2}(-\ln 2+2)-\frac{1}{2}(0+1)+\frac{1}{2} \ln 2 \\
& =\frac{1}{2}
\end{aligned}
$$

