STEP 2015, Paper 2, Q11 Solution (2 pages; 10/3/21)

(i) 1st part

Coordinates of A are : $(x-a \cos \theta, a \sin \theta)$

2nd part

Differentiating wrt t, velocity of A is $(v+a \sin \theta \cdot \dot{\theta}, a \cos \theta \cdot \dot{\theta})$, or $(v+a \dot{\theta} \sin \theta, a \dot{\theta} \cos \theta)$, as required.
[Note that $v=\dot{x}$ is not necessarily constant.]

(ii) 1st part

By symmetry, the velocity of B is $(v+a \dot{\theta} \sin \theta,-a \dot{\theta} \cos \theta)$.
By conservation of linear momentum,
$m\binom{u}{0}=m\binom{v}{0}+m\binom{v+a \dot{\theta} \sin \theta}{a \dot{\theta} \cos \theta}+m\binom{v+a \dot{\theta} \sin \theta}{-a \dot{\theta} \cos \theta}$,
so that $u=3 v+2 a \dot{\theta} \sin \theta$, as required.

2nd part

By conservation of energy,

$$
\begin{aligned}
& \frac{1}{2} m u^{2}=\frac{1}{2} m v^{2}+2 \cdot \frac{1}{2} m\left\{(v+a \dot{\theta} \sin \theta)^{2}+(a \dot{\theta} \cos \theta)^{2}\right\} \\
& \text { so that } u^{2}=v^{2}+2\left\{(v+a \dot{\theta} \sin \theta)^{2}+(a \dot{\theta} \cos \theta)^{2}\right\} \\
& =3 v^{2}+4 v a \dot{\theta} \sin \theta+2 a^{2}(\dot{\theta})^{2}
\end{aligned}
$$

From the $1^{\text {st }}$ part, $v=\frac{1}{3}(u-2 a \dot{\theta} \sin \theta)$, and so

$$
u^{2}=\frac{1}{3}(u-2 a \dot{\theta} \sin \theta)^{2}+\frac{4}{3}(u-2 a \dot{\theta} \sin \theta) a \dot{\theta} \sin \theta+2 a^{2}(\dot{\theta})^{2}
$$

Writing $k=a \dot{\theta}$, for the moment,
$3 u^{2}=u^{2}-4 u k \sin \theta+4 k^{2} \sin ^{2} \theta+4(u-2 k \sin \theta) k \sin \theta+6 k^{2}$
$\Rightarrow 2 u^{2}=4 k^{2} \sin ^{2} \theta-8 k^{2} \sin ^{2} \theta+6 k^{2}$
$\Rightarrow u^{2}=\left(3-2 \sin ^{2} \theta\right) k^{2}$,
so that $(\dot{\theta})^{2}=\frac{k^{2}}{a^{2}}=\frac{u^{2}}{a^{2}\left(3-2 \sin ^{2} \theta\right)}$, as required.
(iii) As no energy is lost in the collision, the results of (ii) continue to apply. When $\theta=0$, after A and C have collided, θ is increasing, and thereafter $\dot{\theta}$ is never zero (from the $2^{\text {nd }}$ result of (ii)). So θ continues to increase, and therefore the $2^{\text {nd }}$ collision between A and C occurs when $\theta=\pi$.
(iv) From the $1^{\text {st }}$ result of (ii), when $v=0$,
$(a \dot{\theta})^{2}=\frac{u^{2}}{4 \sin ^{2} \theta}$, and substituting into the $2^{\text {nd }}$ result gives
$4 \sin ^{2} \theta=3-2 \sin ^{2} \theta$,
so that $\sin ^{2} \theta=\frac{1}{2}$, giving $\sin \theta= \pm \frac{1}{\sqrt{2}}$,
and hence $\theta=\frac{\pi}{4}$ or $\frac{3 \pi}{4}$, as A remains above the x-axis.
Now, A will oscillate between $\theta=0 \& \theta=\pi$, and $\dot{\theta}$ will be negative as A returns to $\theta=0$. In that situation, the $1^{\text {st }}$ result of (ii) $\Rightarrow 3 v=u-2 a \dot{\theta} \sin \theta>u$, so that v won't be zero.

