STEP 2015, Paper 1, Q9 Solution (2 pages; 21/2/20)

1st part

Let $T(\alpha)$ be the time from firing when a bullet hits the ground.
Then $u \sin \alpha T(\alpha)-g[T(\alpha)]^{2}=0 \Rightarrow T(\alpha)=\frac{2 u \sin \alpha}{g}($ as $T(\alpha) \neq 0)$.
A bullet fired at time t hits the ground at time
$T_{1}(\alpha)=t+\frac{2 u \sin \alpha}{g}$, where $\alpha=\frac{\pi}{3}-\lambda t$,
so that $T_{1}(\alpha)=\frac{\frac{\pi}{3}-\alpha}{\lambda}+\frac{2 u \sin \alpha}{g}$
In the case of the last bullet to hit the ground, $T_{1}(\alpha)$ is a maximum; ie $\frac{d}{d \alpha} T_{1}(\alpha)=0$,
so that $-\frac{1}{\lambda}+\frac{2 u}{g} \cos \alpha=0 \Rightarrow \cos \alpha=\frac{g}{2 u \lambda}=k$
The range of this bullet is $(u \cos \alpha) T(\alpha)=\frac{2 u^{2} \sin \alpha \cos \alpha}{g}$
$=\frac{2 u^{2}}{g} \sqrt{1-k^{2}} \cdot k$, as required.
This result is valid for $\frac{\pi}{6} \leq \alpha \leq \frac{\pi}{3}$; ie $\frac{1}{2} \leq k \leq \frac{\sqrt{3}}{2}$.

2nd part

When $k<\frac{1}{2}, T_{1}(\alpha)$ is maximised (when $\cos \alpha=k$) at $\alpha=\alpha_{1}>\frac{\pi}{3}$
Consider $\frac{d}{d \alpha} T_{1}(\alpha)=-\frac{1}{\lambda}+\frac{2 u}{g} \cos \alpha=-\frac{1}{\lambda}+\frac{1}{\lambda k} \cos \alpha$
$=\frac{1}{\lambda k}(\cos \alpha-k)$
For $\alpha<\alpha_{1}, \cos \alpha>\cos \alpha_{1}=k$, so that $\frac{d}{d \alpha} T_{1}(\alpha)>0$

Thus $T_{1}(\alpha)$ is an increasing function, and so its greatest value for $\frac{\pi}{6} \leq \alpha \leq \frac{\pi}{3}$ occurs when $\alpha=\frac{\pi}{3}$; ie when the range is

$$
\frac{2 u^{2} \sin \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}\right)}{g}=\frac{2 u^{2}\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)}{g}=\frac{u^{2} \sqrt{3}}{2 g}
$$

