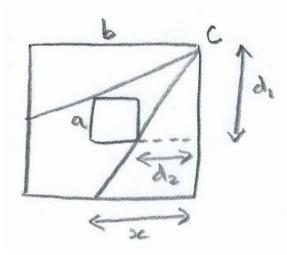
STEP 2015, P1, Q3 - Solution (4 pages; 31/7/20)

Guard standing at a corner



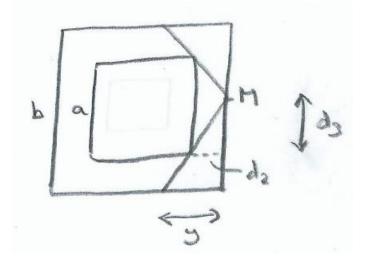
Referring to the diagram above, the total length of the perimeter that the guard can see is $p_c = 2b + 2x$

 $d_{1} = a + \frac{1}{2}(b - a) = \frac{1}{2}(a + b)$ And $d_{2} = \frac{1}{2}(b - a)$ Then $x = d_{2} \cdot \frac{b}{d_{1}}$ (by similar triangles) so that $p_{C} = 2b + (b - a)\frac{b}{\frac{1}{2}(a + b)}$ $= \frac{2b(a+b)+2(b-a)b}{a+b}$ $= \frac{4b^{2}}{a+b}$

Guard standing at the middle of the wall

There are 2 possible scenarios

Scenario A



Referring to the diagram above, the total length of the perimeter that the guard can see is:

$$p_{M} = b + 2y$$
And $y = d_{2} \cdot \frac{\left(\frac{b}{2}\right)}{d_{3}}$

$$= \frac{1}{2}(b - a)\frac{\left(\frac{b}{2}\right)}{\left(\frac{a}{2}\right)}$$

$$= \frac{(b - a)b}{2a}$$
Then $n_{12} = b + 2y = b$

Then $p_M = b + 2y = b + \frac{(b-a)b}{a}$ $= \frac{b}{a}(a + [b-a])$ $= \frac{b^2}{a}$

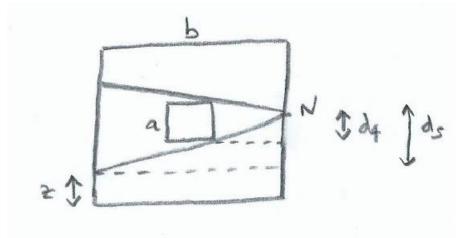
This scenario applies when $y \leq b$;

ie when
$$\frac{(b-a)b}{2a} \le b$$

 $\Leftrightarrow b - a \le 2a$

$\Leftrightarrow b \leq 3a$

Scenario B



Referring to the diagram above, the total length of the perimeter that the guard can see is: $p_N = 3b + 2z$

Now,
$$\frac{d_5}{d_4} = \frac{b}{d_2}$$

$$\Rightarrow d_5 = \frac{b\left(\frac{a}{2}\right)}{\frac{1}{2}(b-a)} = \frac{ab}{b-a}$$
and $z = \frac{b}{2} - d_5$

$$= \frac{b}{2} - \frac{ab}{b-a}$$

$$= \frac{b(b-a)-2ab}{2(b-a)}$$

$$= \frac{b(b-3a)}{2(b-a)}$$
Then $p_N = 3b + \frac{b(b-3a)}{b-a}$

$$= \frac{3b(b-a)+b(b-3a)}{b-a}$$

$$= \frac{b(4b-6a)}{b-a}$$
$$= \frac{2b(2b-3a)}{b-a}$$

Conclusion

When b < 3a (so that scenario A applies),

$$p_{C} - p_{M} = \frac{4b^{2}}{a+b} - \frac{b^{2}}{a}$$
$$= \frac{b^{2}}{a(a+b)} (4a - [a+b])$$
$$= \frac{b^{2}(3a-b)}{a(a+b)} > 0$$

so that the corner is better

When b > 3a (so that scenario B applies),

$$p_{C} - p_{N} = \frac{4b^{2}}{a+b} - \frac{2b(2b-3a)}{b-a}$$

$$= \frac{4b^{2}(b-a) - 2b(2b-3a)(a+b)}{b^{2}-a^{2}}$$

$$= \frac{2b(2b^{2}-2ab - [2ab+2b^{2}-3a^{2}-3ab])}{b^{2}-a^{2}}$$

$$= \frac{2b(-ab+3a^{2})}{b^{2}-a^{2}}$$

$$= \frac{2ab(3a-b)}{b^{2}-a^{2}} < 0$$

so that the middle of the wall is better

When b = 3a, either of scenarios A and B can be applied, and the two positions are equally good.