STEP 2015, P1, Q3 - Solution (4 pages; 31/7/20)

Guard standing at a corner

Referring to the diagram above, the total length of the perimeter that the guard can see is $p_{C}=2 b+2 x$

$$
d_{1}=a+\frac{1}{2}(b-a)=\frac{1}{2}(a+b)
$$

And $d_{2}=\frac{1}{2}(b-a)$
Then $x=d_{2} \cdot \frac{b}{d_{1}}$ (by similar triangles)
so that $p_{C}=2 b+(b-a) \frac{b}{\frac{1}{2}(a+b)}$
$=\frac{2 b(a+b)+2(b-a) b}{a+b}$
$=\frac{4 b^{2}}{a+b}$

Guard standing at the middle of the wall

There are 2 possible scenarios

Scenario A

Referring to the diagram above, the total length of the perimeter that the guard can see is:
$p_{M}=b+2 y$
And $y=d_{2} \cdot \frac{\left(\frac{b}{2}\right)}{d_{3}}$
$=\frac{1}{2}(b-a) \frac{\left(\frac{b}{2}\right)}{\left(\frac{a}{2}\right)}$
$=\frac{(b-a) b}{2 a}$
Then $p_{M}=b+2 y=b+\frac{(b-a) b}{a}$
$=\frac{b}{a}(a+[b-a])$
$=\frac{b^{2}}{a}$
This scenario applies when $y \leq b$;
ie when $\frac{(b-a) b}{2 a} \leq b$
$\Leftrightarrow b-a \leq 2 a$
$\Leftrightarrow b \leq 3 a$

Scenario B

Referring to the diagram above, the total length of the perimeter that the guard can see is: $p_{N}=3 b+2 z$

Now, $\frac{d_{5}}{d_{4}}=\frac{b}{d_{2}}$
$\Rightarrow d_{5}=\frac{b\left(\frac{a}{2}\right)}{\frac{1}{2}(b-a)}=\frac{a b}{b-a}$
and $z=\frac{b}{2}-d_{5}$
$=\frac{b}{2}-\frac{a b}{b-a}$
$=\frac{b(b-a)-2 a b}{2(b-a)}$
$=\frac{b(b-3 a)}{2(b-a)}$
Then $p_{N}=3 b+\frac{b(b-3 a)}{b-a}$
$=\frac{3 b(b-a)+b(b-3 a)}{b-a}$
$=\frac{b(4 b-6 a)}{b-a}$
$=\frac{2 b(2 b-3 a)}{b-a}$

Conclusion

When $b<3 a$ (so that scenario A applies),
$p_{C}-p_{M}=\frac{4 b^{2}}{a+b}-\frac{b^{2}}{a}$
$=\frac{b^{2}}{a(a+b)}(4 a-[a+b])$
$=\frac{b^{2}(3 a-b)}{a(a+b)}>0$
so that the corner is better

When $b>3 a$ (so that scenario B applies),
$p_{C}-p_{N}=\frac{4 b^{2}}{a+b}-\frac{2 b(2 b-3 a)}{b-a}$
$=\frac{4 b^{2}(b-a)-2 b(2 b-3 a)(a+b)}{b^{2}-a^{2}}$
$=\frac{2 b\left(2 b^{2}-2 a b-\left[2 a b+2 b^{2}-3 a^{2}-3 a b\right]\right)}{b^{2}-a^{2}}$
$=\frac{2 b\left(-a b+3 a^{2}\right)}{b^{2}-a^{2}}$
$=\frac{2 a b(3 a-b)}{b^{2}-a^{2}}<0$
so that the middle of the wall is better

When $b=3 a$, either of scenarios A and B can be applied, and the two positions are equally good.

