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STEP 2015, P1, Q12 - Solution (2 pages; 16/7/20)   

(i) Number of casualties requiring surgery ~𝐵(𝑛,
1

4
) 
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) (
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4
)

𝑟
(
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=
𝑛!3𝑛−𝑟

𝑟!(𝑛−𝑟)!4𝑛  

 

(ii) Let Y be the number requiring surgery each day. 

Then 𝑃(𝑌 = 𝑟) = ∑ 𝑃(𝑋 = 𝑛)𝑃(𝑌 = 𝑟|𝑋 = 𝑛)∞
𝑛=𝑟   

= ∑
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Writing 𝑘 = 𝑛 − 𝑟, 

𝑃(𝑌 = 𝑟) =
𝑒−8
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∑
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=
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so that Y follows a Poisson distribution with mean 2. 

 

(iii) P(8 casualties require surgery on Monday | a total of 12 

casualties require surgery on Monday and Tuesday) 

= P(8 casualties require surgery on Monday, and a total of 12 

casualties require surgery on Monday and Tuesday) 
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÷ 𝑃(a total of 12 casualties require surgery on Monday and Tuesday) 

= P(8 casualties require surgery on Monday, and 4 casualties 

require surgery on Tuesday) 

÷ 𝑃(a total of 12 casualties require surgery on Monday and Tuesday) 

= P(8 casualties require surgery on Monday)P(4 casualties 

require surgery on Tuesday) 

÷ 𝑃(a total of 12 casualties require surgery on Monday and Tuesday) 

 

The total number of casualties who require surgery on Monday 

and Tuesday follows a Poisson distribution with mean 2 × 2 = 4 

So required prob. =
(
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8!
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(
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=
21212!

4128!4!
  

=
12(11)(10)(9)

212(4!)
  

=
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=
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