STEP 2015, P1, Q12 - Solution (2 pages; 16/7/20)
(i) Number of casualties requiring surgery $\sim B\left(n, \frac{1}{4}\right)$

$=\frac{n!3^{n-r}}{r!(n-r)!4^{n}}$
(ii) Let $Y$ be the number requiring surgery each day.

Then $P(Y=r)=\sum_{n=r}^{\infty} P(X=n) P(Y=r \mid X=n)$
$=\sum_{n=r}^{\infty} \frac{e^{-8} 8^{n}}{n!} \cdot \frac{n!3^{n-r}}{r!(n-r)!4^{n}}$
$=\frac{e^{-8}}{r!3^{r}} \sum_{n=r}^{\infty} \frac{6^{n}}{(n-r)!}$
Writing $k=n-r$,
$P(Y=r)=\frac{e^{-8}}{r!3^{r}} \sum_{k=0}^{\infty} \frac{6^{k+r}}{k!}$
$=\frac{e^{-8} 2^{r}}{r!} \sum_{k=0}^{\infty} \frac{6^{k}}{k!}$
$=\frac{e^{-8} 2^{r}}{r!} \cdot e^{6}$
$=\frac{e^{-2} 2^{r}}{r!}$
so that Y follows a Poisson distribution with mean 2.
(iii) P (8 casualties require surgery on Monday | a total of 12 casualties require surgery on Monday and Tuesday)
$=\mathrm{P}(8$ casualties require surgery on Monday, and a total of 12 casualties require surgery on Monday and Tuesday)
$\div P$ (a total of 12 casualties require surgery on Monday and Tuesday)
$=P(8$ casualties require surgery on Monday, and 4 casualties require surgery on Tuesday)
$\div P$ (a total of 12 casualties require surgery on Monday and Tuesday)
$=\mathrm{P}$ ( 8 casualties require surgery on Monday $) \mathrm{P}$ (4 casualties require surgery on Tuesday)
$\div P$ (a total of 12 casualties require surgery on Monday and Tuesday)

The total number of casualties who require surgery on Monday and Tuesday follows a Poisson distribution with mean $2 \times 2=4$

So required prob. $=\frac{\left(\frac{e^{-2} 2^{8}}{8!}\right)\left(\frac{e^{-2} 2^{4}}{4!}\right)}{\left(\frac{e^{-4} 4^{12}}{12!}\right)}$
$=\frac{2^{12} 12!}{4^{12} 8!4!}$
$=\frac{12(11)(10)(9)}{2^{12}(4!)}$
$=\frac{(11)(5)(9)}{2^{12}}$
$=\frac{495}{4096}$

