STEP 2015, P1, Q10 - Solution (4 pages; 3/8/20)
1st part

The rain has velocity $\binom{v \cos \theta}{v \sin \theta}$, where the positive directions are to the North and downwards.

When $u=0$, the amounts of rain hitting different parts of the bus in unit time are as follows:
back: $k b h v \cos \theta$, where b is the width of the bus, and k is the density of the rain per unit volume
roof: $k b a v \sin \theta$
front: 0
Thus the total amount is proportional to $h v \cos \theta+a v \sin \theta$

2nd part

When $0<u \leq v \cos \theta$, these amounts become
back: $k b h(v \cos \theta-u)$ (based on the velocity of the rain relative to the bus)
roof: kbavsin θ
front: 0
And when $u>v \cos \theta$, the amounts become
back: 0
roof: kbavsinθ
front: $k b h(u-v \cos \theta)$ (as the bus catches up with the rain)
[In the official Hints \& Sol'ns, they say "while the rain hits the front of the bus as before, but with $u-v \cos \theta$ instead of $v \cos \theta$ ".
This should read: "while the rain hits the front of the bus, instead of the back, and with $u-v \cos \theta$ instead of $v \cos \theta "]$

Thus the total amount (in any case) is proportional to
$h|v \cos \theta-u|+a v \sin \theta$, as required.

3rd part

The total amount of rain over the whole journey is proportional to $=\{h|v \cos \theta-u|+a v \sin \theta\} \cdot \frac{d}{u}$, where d is the distance travelled ie it is proportional to $h\left|\frac{v \cos \theta}{u}-1\right|+\frac{a v \sin \theta}{u}$ Let $f(u)=h\left(\frac{v \cos \theta}{u}-1\right)+\frac{a v \sin \theta}{u}$, for $u \leq v \cos \theta$, and $g(u)=h\left(1-\frac{v \cos \theta}{u}\right)+\frac{a v \sin \theta}{u}$, for $u \geq v \cos \theta$

Then $f^{\prime}(u)=-\frac{v(h \cos \theta+a \sin \theta)}{u^{2}}$
Thus $f(u)$ decreases as u increases.
Also, $g^{\prime}(u)=\frac{v(h \cos \theta-a \sin \theta)}{u^{2}}$
So, if $w<v \cos \theta$ (so that $u<v \cos \theta$ and $f(u)$ applies), then $f(u)$ is minimised when $u=w$

If instead $w \geq v \cos \theta$, then $f(u)$ has its least value when u is as large as possible; ie when $u=v \cos \theta$, when $g(u)$ has the same value as $f(u)$. When $a \sin \theta>h \cos \theta, g(u)$ decreases as u
increases, and so the least value of $g(u)$ (which is \leq the least value of $f(u)$) occurs for the largest possible value of u; ie w - as required.

4th part

If $w>v \cos \theta$ and $a \sin \theta<h \cos \theta$, then $g(u)$ increases beyond $u=v \cos \theta$, and so the least value of $f(u)$ or $g(u)$ occurs at $u=v \cos \theta$

5th part

If $a \sin \theta=h \cos \theta$, then $g(u)$ is constant, and so the amount of rain is minimised for any $u \geq v \cos \theta$
[The official Hints \& Sol'ns say "we may as well take $u=w$ ", but the driver may not want to travel at the maximum speed!]

6th part

For the return journey, the total amount of rain per unit time is proportional to $h(v \cos \theta+u)+a v \sin \theta$, where the 1 st term is due to rain hitting the front, and the 2 nd term is from rain hitting the roof.

And so the total amount of rain for the whole (return) journey is proportional to $h\left(\frac{v \cos \theta}{u}+1\right)+\frac{a v \sin \theta}{u}($ for all $u)$.

This differs from $f(u)$ above by a constant, and hence is minimised when u is as large as possible; ie when $u=w$. [The official Hints \& Sol'ns say "simply replace θ by $180-\theta$ ".

Note that, in this case, $\cos \theta$ will be negative, and so u is always $\geq v \cos \theta$, so that $g(u)$ applies, rather than $f(u)$. Sometimes the examiners insist on a convincing explanation as to why the result can be extended to values of θ outside the original range
(arguably it isn't obvious that it can), so this strategy might be risky for other questions.]

