STEP 2014, P3, Q9 - Solution (3 pages; 2/6/20)

1st part

$\underline{v}=\frac{d}{d t} \underline{r}=\frac{k-k e^{-k t}}{k^{2}} \underline{g}+\frac{k e^{-k t}}{k} \underline{u}$ (as $\underline{g} \& \underline{u}$ are constant)
$=\frac{1-e^{-k t}}{k} \underline{g}+e^{-k t} \underline{u}$
To check that the eq' n of motion is satisfied:
$\mathrm{N} 2 \mathrm{~L} \Rightarrow m \underline{g}-m k \underline{v}=m \underline{a}$, or $\underline{g}-k \underline{v}=\underline{a}$
where $\underline{a}=\frac{d}{d t} \underline{v}=e^{-k t} \underline{g}-k e^{-k t} \underline{u}$
LHS of (1) is $\underline{g}-k\left(\frac{1-e^{-k t}}{k} \underline{g}+e^{-k t} \underline{u}\right)=\underline{a}$, as required.
To check that the initial conditions are satisfied:
When $t=0, \underline{v}=\frac{1-1}{k} \underline{g}+\underline{u}=\underline{u}$,
and $\underline{r}=\frac{0-1+1}{k^{2}} \underline{g}+\frac{1-1}{k} \underline{u}=\underline{0}$, as required.

2nd part

[$\underline{r} . \underline{j}=0 \Rightarrow$ particle crosses the x-axis]
$\underline{r} \cdot \underline{j}=0 \Rightarrow\left(\frac{k T-1+e^{-k T}}{k^{2}}\right)(-g)+\left(\frac{1-e^{-k T}}{k}\right)(u \sin \alpha)=0$
$\Rightarrow\left(k T-1+e^{-k T}\right)(-g)+\left(1-e^{-k T}\right)(u k \sin \alpha)=0$
$\Rightarrow u k \sin \alpha=\frac{\left(k T-1+e^{-k T}\right) g}{1-e^{-k T}}=\left(\frac{k T}{1-e^{-k T}}-1\right) g$, as required.

3rd part

At time $T, \underline{v}=\frac{1-e^{-k T}}{k} \underline{g}+e^{-k T} \underline{u}$
$=e^{-k T} u \cos \alpha \underline{i}+\left\{\left(\frac{1-e^{-k T}}{k}\right)(-g)+u \sin \alpha \cdot e^{-k T}\right\} \underline{j}$

The particle crosses the x-axis at time T, and as it is moving towards the x-axis, β is the angle below the x-axis, so that
$\tan \beta=\frac{-\left\{\left(\frac{1-e^{-k T}}{k}\right)(-g)+u \sin \alpha \cdot e^{-k T}\right\}}{e^{-k T} u \cos \alpha}$
$=\frac{\left(1-e^{-k T}\right) g}{e^{-k T} u k \cos \alpha}-\tan \alpha$
$=\frac{\left(e^{k T}-1\right) g}{u k \cos \alpha}-\tan \alpha$, as required.

4th part

result to prove: $\frac{\left(e^{k T}-1\right) g}{u k \cos \alpha}-2 \tan \alpha>0$
From the 2nd part,
LHS $=\frac{\left(e^{k T}-1\right)}{u k \cos \alpha} \cdot \frac{u k \sin \alpha}{\left(\frac{k T}{1-e^{-k T}}-1\right)}-2 \tan \alpha$
$=\frac{\left(e^{k T}-1\right)\left(1-e^{-k T}\right) \tan \alpha}{k T-\left(1-e^{-k T}\right)}-2 \tan \alpha$
So (1) is equivalent to $\frac{e^{k T}-1-1+e^{-k T}}{k T-1+e^{-k T}}-2>0$ [as $\left.\tan \alpha>0\right]$
LHS $=\frac{e^{k T}-2+e^{-k T}-2 k T+2-2 e^{-k T}}{k T-1+e^{-k T}}$
$=\frac{e^{k T}-e^{-k T}-2 k T}{k T-1+e^{-k T}}$
Numerator of $(3)=2 \sinh k T-2 k T>0$, assuming that
$\sinh k T>k T$
Denominator of (3) $=f(k T)$,
where $f(x)=x-1+e^{-x}$
$f^{\prime}(x)=1-e^{-x}>0$ for $x>0$
Then, as $f(0)=0$, it follows that $f(x)>0$ for $x>0$,
and hence the denominator of (3) >0, as $k \& T>0$
Therefore (3) >0, and hence $\tan \beta>\tan \alpha$, so that $\beta>\alpha$ (as $\tan x$ is an increasing function for $0 \leq x \leq \frac{\pi}{2}$, and $0<\alpha<\frac{\pi}{2}$
(given) and $0 \leq \beta \leq \frac{\pi}{2}$ (from the motion of the particle).

