STEP 2014, P3, Q7 - Sol'n (3 pages; 12/3/24)

(i)

Referring to the diagram, the chord P_1P_2 subtends the angle α at both P_3 and P_4 (property of a circle). Similarly, the chord P_3P_4 subtends the angle β at both P_1 and P_2 . Thus the triangles P_1QP_4 and P_2QP_3 are similar, and hence $\frac{P_1Q}{QP_4} = \frac{P_2Q}{QP_3}$, so that

 $(P_1Q)(QP_3) = (P_2Q)(QP_4)$, as required.

(ii) As *Q* lies on the line segment P_1P_3 , $\underline{q} = \lambda \underline{p}_1 + (1 - \lambda)\underline{p}_3$ for some $\lambda > 0$. Similarly, $\underline{q} = \mu \underline{p}_2 + (1 - \mu)\underline{p}_4$ Hence $\lambda \underline{p}_1 + (1 - \lambda)\underline{p}_3 = \mu \underline{p}_2 + (1 - \mu)\underline{p}_4$, so that $\lambda \underline{p}_1 - \mu \underline{p}_2 + (1 - \lambda)\underline{p}_3 - (1 - \mu)\underline{p}_4 = \underline{0}$ (**) and $\lambda + (-\mu) + (1 - \lambda) + [-(1 - \mu)] = 0$, as required.

(iii) 1st part

Suppose that $a_1 + a_3 = 0$, Then, as $a_1 + a_2 + a_3 + a_4 = 0$, it follows that $a_2 + a_4 = 0$ And so $a_1\underline{p}_1 + a_2\underline{p}_2 + a_3\underline{p}_3 + a_4\underline{p}_4 = \underline{0} \Rightarrow$ $a_1(\underline{p}_1 - \underline{p}_3) + a_2(\underline{p}_2 - \underline{p}_4) = \underline{0}$, and hence $a_2(\underline{p}_2 - \underline{p}_4) = -a_1(\underline{p}_1 - \underline{p}_3)$, But the P_i are distinct points, and P_2P_4 and P_1P_3 are not parallel,

which means that $a_1 = a_2 = 0$. But this means that all the a_i are zero, so that we have a contradiction. Hence $a_1 + a_3 \neq 0$.

2nd part

We need to show that the point with position vector $\frac{a_1\underline{p}_1+a_3\underline{p}_3}{a_1+a_3}$ lies on both P_1P_3 and P_2P_4 .

Clearly it lies on P_1P_3 , as any point on P_1P_3 can be written as $\lambda \underline{p}_1 + (1 - \lambda)\underline{p}_3$ for a suitable λ . (So here $\lambda = \frac{a_1}{a_1 + a_3}$)

Also, $\frac{a_1\underline{p}_1 + a_3\underline{p}_3}{a_1 + a_3} = \frac{-(a_2\underline{p}_2 + a_4\underline{p}_4)}{-(a_2 + a_4)} = \frac{a_2\underline{p}_2 + a_4\underline{p}_4}{a_2 + a_4}$, so that it lies on P_2P_4 as well (at $\mu\underline{p}_2 + (1 - \mu)\underline{p}_4$, with $\mu = \frac{a_2}{a_2 + a_4}$), as required.

3rd part

[Note that $(P_1P_3)^2 = (\underline{p}_1 - \underline{p}_3) \cdot (\underline{p}_1 - \underline{p}_3)$, and that the result from (i) is almost certainly to be used. The question is, whether to

start from the result from (i), and try to obtain

 $a_1a_3(P_1P_3)^2 = a_2a_4(P_2P_4)^2$, or the other way round. Trying the 1st approach:]

$$(P_1Q)(QP_3) = (P_2Q)(QP_4) \Rightarrow (P_1Q)^2(QP_3)^2 = (P_2Q)^2(QP_4)^2$$

LHS = $(\underline{p}_1 - \underline{q}) \cdot (\underline{p}_1 - \underline{q}) (\underline{p}_3 - \underline{q}) \cdot (\underline{p}_3 - \underline{q})$ (***)

Now from the 2nd part of (iii),

$$\underline{p}_1 - \underline{q} = \underline{p}_1 - \frac{a_1 \underline{p}_1 + a_3 \underline{p}_3}{a_1 + a_3}$$

Writing $A = a_1 + a_3$, this equals $\frac{\underline{p}_1(A-a_1)-a_3\underline{p}_3}{A} = \frac{a_3}{A}(\underline{p}_1 - \underline{p}_3)$ Similarly, $\underline{p}_3 - \underline{q} = \frac{a_1}{A}(\underline{p}_3 - \underline{p}_1)$, and hence (***) equals

$$\frac{a_3}{A} \left(\underline{p}_1 - \underline{p}_3 \right) \cdot \frac{a_3}{A} \left(\underline{p}_1 - \underline{p}_3 \right) \frac{a_1}{A} \left(\underline{p}_3 - \underline{p}_1 \right) \cdot \frac{a_1}{A} \left(\underline{p}_3 - \underline{p}_1 \right)$$
$$= \frac{a_3^2 a_1^2}{A^4} \left| \underline{p}_1 - \underline{p}_3 \right|^4$$

Similarly, RHS equals $\frac{a_4^2 a_2^2}{B^4} \left| \underline{p}_2 - \underline{p}_4 \right|^4$,

where $B = a_2 + a_4 = -(a_1 + a_3) = -A$, and so, taking the square root of each side,

 $a_1 a_3 (P_1 P_3)^2 = a_2 a_4 (P_2 P_4)^2$, as required.

[Trying the other way:

$$a_1a_3(P_1P_3)^2 = a_1a_3\left(\underline{p}_1 - \underline{p}_3\right).\left(\underline{p}_1 - \underline{p}_3\right),$$

but it isn't obvious how to introduce q]