STEP 2014, P3, Q7-Sol'n (3 pages; 12/3/24)
(i)

Referring to the diagram, the chord $P_{1} P_{2}$ subtends the angle α at both P_{3} and P_{4} (property of a circle). Similarly, the chord $P_{3} P_{4}$ subtends the angle β at both P_{1} and P_{2}. Thus the triangles $P_{1} Q P_{4}$ and $P_{2} Q P_{3}$ are similar, and hence $\frac{P_{1} Q}{Q P_{4}}=\frac{P_{2} Q}{Q P_{3}}$, so that $\left(P_{1} Q\right)\left(Q P_{3}\right)=\left(P_{2} Q\right)\left(Q P_{4}\right)$, as required.
(ii) As Q lies on the line segment $P_{1} P_{3}, \underline{q}=\lambda \underline{p}_{1}+(1-\lambda) \underline{p}_{3}$ for some $\lambda>0$.

Similarly, $\underline{q}=\mu \underline{p}_{2}+(1-\mu) \underline{p}_{4}$
Hence $\lambda \underline{p}_{1}+(1-\lambda) \underline{p}_{3}=\mu \underline{p}_{2}+(1-\mu) \underline{p}_{4}$,
so that $\left.\lambda \underline{p}_{1}-\mu \underline{p}_{2}+(1-\lambda) \underline{p}_{3}-(1-\mu) \underline{p}_{4}=\underline{0} \quad \quad^{* *}\right)$
and $\lambda+(-\mu)+(1-\lambda)+[-(1-\mu)]=0$, as required.

(iii) $1^{\text {st }}$ part

Suppose that $a_{1}+a_{3}=0$,
Then, as $a_{1}+a_{2}+a_{3}+a_{4}=0$, it follows that $a_{2}+a_{4}=0$
And so $a_{1} \underline{p}_{1}+a_{2} \underline{p}_{2}+a_{3} \underline{p}_{3}+a_{4} \underline{p}_{4}=\underline{0} \Rightarrow$
$a_{1}\left(\underline{p}_{1}-\underline{p}_{3}\right)+a_{2}\left(\underline{p}_{2}-\underline{p}_{4}\right)=\underline{0}$,
and hence $a_{2}\left(\underline{p}_{2}-\underline{p}_{4}\right)=-a_{1}\left(\underline{p}_{1}-\underline{p}_{3}\right)$,
But the P_{i} are distinct points, and $P_{2} P_{4}$ and $P_{1} P_{3}$ are not parallel, which means that $a_{1}=a_{2}=0$. But this means that all the a_{i} are zero, so that we have a contradiction. Hence $a_{1}+a_{3} \neq 0$.

2nd part

We need to show that the point with position vector $\frac{a_{1} \underline{p}_{1}+a_{3} \underline{p}_{3}}{a_{1}+a_{3}}$ lies on both $P_{1} P_{3}$ and $P_{2} P_{4}$.

Clearly it lies on $P_{1} P_{3}$, as any point on $P_{1} P_{3}$ can be written as $\lambda \underline{p}_{1}+(1-\lambda) \underline{p}_{3}$ for a suitable λ. (So here $\lambda=\frac{a_{1}}{a_{1}+a_{3}}$)

Also, $\frac{a_{1} \underline{p}_{1}+a_{3} \underline{p}_{3}}{a_{1}+a_{3}}=\frac{-\left(a_{2} \underline{p}_{2}+a_{4} \underline{p}_{4}\right)}{-\left(a_{2}+a_{4}\right)}=\frac{a_{2} \underline{p}_{2}+a_{4} \underline{p}_{4}}{a_{2}+a_{4}}$, so that it lies on $P_{2} P_{4}$ as well (at $\mu \underline{p}_{2}+(1-\mu) \underline{p}_{4}$, with $\mu=\frac{a_{2}}{a_{2}+a_{4}}$), as required.

3rd part

[Note that $\left(P_{1} P_{3}\right)^{2}=\left(\underline{p}_{1}-\underline{p}_{3}\right) \cdot\left(\underline{p}_{1}-\underline{p}_{3}\right)$, and that the result from (i) is almost certainly to be used. The question is, whether to
start from the result from (i), and try to obtain
$a_{1} a_{3}\left(P_{1} P_{3}\right)^{2}=a_{2} a_{4}\left(P_{2} P_{4}\right)^{2}$, or the other way round. Trying the $1^{\text {st }}$ approach:]

$$
\begin{aligned}
& \left(P_{1} Q\right)\left(Q P_{3}\right)=\left(P_{2} Q\right)\left(Q P_{4}\right) \Rightarrow\left(P_{1} Q\right)^{2}\left(Q P_{3}\right)^{2}=\left(P_{2} Q\right)^{2}\left(Q P_{4}\right)^{2} \\
& \text { LHS }=\left(\underline{p}_{1}-\underline{q}\right) \cdot\left(\underline{p}_{1}-\underline{q}\right)\left(\underline{p}_{3}-\underline{q}\right) \cdot\left(\underline{p}_{3}-\underline{q}\right) \quad(* *)
\end{aligned}
$$

Now from the $2^{\text {nd }}$ part of (iii),

$$
\underline{p}_{1}-\underline{q}=\underline{p}_{1}-\frac{a_{1} \underline{p}_{1}+a_{3} \underline{p_{3}}}{a_{1}+a_{3}}
$$

Writing $A=a_{1}+a_{3}$, this equals $\frac{\underline{p}_{1}\left(A-a_{1}\right)-a_{3} \underline{p}_{3}}{A}=\frac{a_{3}}{A}\left(\underline{p}_{1}-\underline{p}_{3}\right)$
Similarly, $\underline{p}_{3}-\underline{q}=\frac{a_{1}}{A}\left(\underline{p}_{3}-\underline{p}_{1}\right)$,
and hence (${ }^{* * *}$) equals

$$
\begin{aligned}
& \frac{a_{3}}{A}\left(\underline{p}_{1}-\underline{p}_{3}\right) \cdot \frac{a_{3}}{A}\left(\underline{p}_{1}-\underline{p}_{3}\right) \frac{a_{1}}{A}\left(\underline{p}_{3}-\underline{p}_{1}\right) \cdot \frac{a_{1}}{A}\left(\underline{p_{3}}-\underline{p}_{1}\right) \\
& =\frac{a_{3}^{2} a_{1}^{2}}{A^{4}}\left|\underline{p}_{1}-\underline{p}_{3}\right|^{4}
\end{aligned}
$$

Similarly, RHS equals $\frac{a_{4}{ }^{2} a_{2}{ }^{2}}{B^{4}}\left|\underline{p_{2}}-\underline{p_{4}}\right|^{4}$,
where $B=a_{2}+a_{4}=-\left(a_{1}+a_{3}\right)=-A$,
and so, taking the square root of each side,
$a_{1} a_{3}\left(P_{1} P_{3}\right)^{2}=a_{2} a_{4}\left(P_{2} P_{4}\right)^{2}$, as required.
[Trying the other way:

$$
a_{1} a_{3}\left(P_{1} P_{3}\right)^{2}=a_{1} a_{3}\left(\underline{p_{1}}-\underline{p}_{3}\right) \cdot\left(\underline{p}_{1}-\underline{p}_{3}\right)
$$

but it isn't obvious how to introduce \underline{q}]

