STEP 2014, P3, Q13 - Sol'n (2 pages; 3/6/20)

(i) [By "pgf conditional on this happening" is presumably meant "pgf of the (random variable representing the) score, given that the game ends in the 1st round"]

Required pgf ($G_1(t)$, say) is:

 $P(score \ is \ 0 \mid game \ ends \ in \ 1st \ round) \ . \ t^0$

+ $P(score \ is \ 1 \mid game \ ends \ in \ 1st \ round) \cdot t^1$

```
+ P(score \ is \ 2 \mid game \ ends \ in \ 1st \ round) \cdot t^2
```

+ ...

```
= (1)(1) + (0)t + (0)t^2 \dots
```

= 1, as required.

(ii) Required pgf ($G_2(t)$, say) is:

 $P(score \ is \ 0 \mid \text{game continues to next round with no change in score}) \cdot t^0$

+ $P(score \ is \ 1 \mid game \ continues \ to \ next \ round \ with \ no \ change \ in \ score) . t^1$

+ $P(score \ is \ 2 \mid game \ continues \ to \ next \ round \ with \ no \ change \ in \ score) . t^2$

+ ...

Let N' be the final score, starting from round 2.

Then required pgf is

 $P(N' = 0) + P(N' = 1)t + P(N' = 2)t^{2} + \cdots$

= G(t), as N & N' have the same probability distribution.

(iii) 1st part

pgf given that the game continues to the 2nd round, with the score increased by 1 ($G_3(t)$, say) is

$$0 + P(N' = 0)t + P(N' = 1)t^{2} + \cdots$$

= $t(P(N' = 0) + P(N' = 1)t + P(N' = 2)t^{2} + \cdots)$
= $tG(t)$

Then
$$G(t) = aG_1(t) + bG_2(t) + cG_3(t)$$

[as the coeff. of t^n is P(N = n), and this can be determined by conditioning on what happens in the 1st round]

= a + bG(t) + ctG(t), as required.

2nd part

So
$$G(t)\{1 - b - ct\} = a$$
, and $G(t) = a(1 - b - ct)^{-1}$
 $= \frac{a}{1-b}(1 - \frac{ct}{1-b})^{-1}$
 $= \frac{a}{1-b}(1 + \frac{ct}{1-b} + \left(\frac{ct}{1-b}\right)^2 + \cdots)$
and $P(N = n) = \text{coeff. of } t^n = \frac{a}{1-b}\left(\frac{c}{1-b}\right)^n = \frac{ac^n}{(1-b)^{n+1}}$, as required.

(iv)
$$E(N) = G'(1)$$

 $G(t) = a(1 - b - ct)^{-1}$
 $\Rightarrow G'(t) = -a(1 - b - ct)^{-2}(-c) = ac(1 - b - ct)^{-2}$
and so $G'(1) = ac(1 - b - c)^{-2} = ac. a^{-2} = \frac{c}{a}$
Thus $\mu = \frac{c}{a}$, and $P(N = n) = \frac{ac^n}{(1-b)^{n+1}} = \frac{\left(\frac{c}{a}\right)^n}{\left(\frac{a+c}{a}\right)^{n+1}} = \frac{\mu^n}{(1+\mu)^{n+1}}$, as required.