STEP 2014, P3, Q13 - Sol'n (2 pages; 3/6/20)
(i) [By "pgf conditional on this happening" is presumably meant "pgf of the (random variable representing the) score, given that the game ends in the 1st round"]

Required pgf ($G_{1}(t)$, say) is:
P (score is $0 \mid$ game ends in 1st round) $\cdot t^{0}$
$+P\left(\right.$ score is $1 \mid$ game ends in 1 st round) $\cdot t^{1}$
$+P\left(\right.$ score is $2 \mid$ game ends in 1 st round) $\cdot t^{2}$

+ ...
$=(1)(1)+(0) t+(0) t^{2} \ldots$
$=1$, as required.
(ii) Required $\operatorname{pgf}\left(G_{2}(t)\right.$, say) is:
P (score is $0 \mid$ game continues to next round with no change in score). t^{0}
$+P($ score is $1 \mid$ game continues to next round with no change in score). t^{1}
$+P$ (score is $2 \mid$ game continues to next round with no change in score). t^{2}
+ ...
Let N^{\prime} be the final score, starting from round 2 .
Then required pgf is
$P\left(N^{\prime}=0\right)+P\left(N^{\prime}=1\right) t+P\left(N^{\prime}=2\right) t^{2}+\cdots$
$=G(t)$, as $N \& N^{\prime}$ have the same probability distribution.

(iii) 1st part

pgf given that the game continues to the 2 nd round, with the score increased by 1 ($G_{3}(t)$, say) is
$0+P\left(N^{\prime}=0\right) t+P\left(N^{\prime}=1\right) t^{2}+\cdots$
$=t\left(P\left(N^{\prime}=0\right)+P\left(N^{\prime}=1\right) t+P\left(N^{\prime}=2\right) t^{2}+\cdots\right)$
$=t G(t)$
Then $G(t)=a G_{1}(t)+b G_{2}(t)+c G_{3}(t)$
[as the coeff. of t^{n} is $P(N=n)$, and this can be determined by conditioning on what happens in the 1st round]
$=a+b G(t)+c t G(t)$, as required.

2nd part

So $G(t)\{1-b-c t)=a$, and $G(t)=a(1-b-c t)^{-1}$
$=\frac{a}{1-b}\left(1-\frac{c t}{1-b}\right)^{-1}$
$=\frac{a}{1-b}\left(1+\frac{c t}{1-b}+\left(\frac{c t}{1-b}\right)^{2}+\cdots\right)$
and $P(N=n)=$ coeff. of $t^{n}=\frac{a}{1-b}\left(\frac{c}{1-b}\right)^{n}=\frac{a c^{n}}{(1-b)^{n+1}}$, as required.
(iv) $E(N)=G^{\prime}(1)$
$G(t)=a(1-b-c t)^{-1}$
$\Rightarrow G^{\prime}(t)=-a(1-b-c t)^{-2}(-c)=a c(1-b-c t)^{-2}$
and so $G^{\prime}(1)=a c(1-b-c)^{-2}=a c \cdot a^{-2}=\frac{c}{a}$
Thus $\mu=\frac{c}{a}$, and $P(N=n)=\frac{a c^{n}}{(1-b)^{n+1}}=\frac{\left(\frac{c}{a}\right)^{n}}{\left(\frac{a+c}{a}\right)^{n+1}}=\frac{\mu^{n}}{(1+\mu)^{n+1}}$, as required.

