STEP 2014, P3, Q10 - Solution (3 pages; 29/5/20)

1st part

Referring to the diagrams, $T_{1}=\frac{\lambda x}{a}, T_{2}=-\frac{\lambda(x+y)}{a} \& T_{3}=\frac{\lambda y}{a}$, by Hooke's law (thus $T_{2}<0$ and the force is a compression).

Then, applying N2L to X (noting that x increases as X moves to the right)
$m \frac{d^{2} x}{d t^{2}}=T_{2}-T_{1}=\frac{\lambda}{a}(-x-y-x)=-\frac{\lambda}{a}(2 x+y)$, as required.

2nd part

For Y (noting that y increases as Y moves to the left):
$m \frac{d^{2} y}{d t^{2}}=T_{2}-T_{3}=\frac{\lambda}{a}(-x-y-y)=-\frac{\lambda}{a}(2 y+x)$
[as would be expected from the symmetry]

3rd part

Hence $m \frac{d^{2}(x-y)}{d t^{2}}=-\frac{\lambda}{a}(2 x+y-2 y-x)=-\frac{\lambda}{a}(x-y)$
\Rightarrow SHM of $x-y$, with $x-y=C \cos (\omega t-\theta)$,
where $\omega^{2}=\frac{\lambda}{m a}$
[The official sol'ns don't suggest that the SHM differential eq'n needs to be solved from 1st principles. Usually standard results such as this can just be quoted.]

When $t=0, x=0 \& y=-\frac{a}{2}$, so that $\frac{a}{2}=C \cos \theta$
Also, $\frac{d(x-y)}{d t}=-\omega C \sin (\omega t-\theta)$,
and initially $\frac{d x}{d t}=\frac{d y}{d t}=0$, so that $0=\omega C \sin \theta$, and hence $\theta=0$,
and so $C=\frac{a}{2}$, giving $x-y=\frac{a}{2} \cos (\omega t)$

4th part

Adding the differential eq'ns instead,

$$
m \frac{d^{2}(x+y)}{d t^{2}}=-\frac{\lambda}{a}(2 x+y+2 y+x)=-\frac{3 \lambda}{a}(x+y)
$$

so that $x+y=D \cos \left(\omega_{1} t-\phi\right)$, where $\omega_{1}{ }^{2}=\frac{3 \lambda}{m a}$

When $t=0, x=0 \& y=-\frac{a}{2}$, so that $-\frac{a}{2}=D \cos \phi$
Also, $\frac{d(x+y)}{d t}=-\omega D \sin \left(\omega_{1} t-\phi\right)$,
and initially $\frac{d x}{d t}=\frac{d y}{d t}=0$, so that $0=\omega D \sin \phi$, and hence $\phi=0$, and so $D=-\frac{a}{2}$, giving $x+y=-\frac{a}{2} \cos \left(\omega_{1} t\right)$

5th part

Subtracting $x-y=\frac{a}{2} \cos (\omega t)$ from $x+y=-\frac{a}{2} \cos \left(\omega_{1} t\right)$:
$2 y=-\frac{a}{2}\left(\cos \left(\omega_{1} t\right)+\cos (\omega t)\right)$
Then $y=-\frac{a}{2} \Rightarrow \cos \left(\omega_{1} t\right)+\cos (\omega t)=2$
$\Rightarrow \cos \left(\omega_{1} t\right)=\cos (\omega t)=1$
$\Rightarrow t=0$ or $\omega_{1} t=2 m \pi$ and $\omega t=2 n \pi$ (where $m \& n$ are integers)

Then $\frac{\omega_{1} t}{\omega t}=\frac{2 m \pi}{2 n \pi}$, and hence $\frac{\omega_{1}}{\omega}=\frac{m}{n}$ (a rational number).
But $\omega^{2}=\frac{\lambda}{m a} \& \omega_{1}{ }^{2}=\frac{3 \lambda}{m a}$, so that $\frac{\omega_{1}}{\omega}=\sqrt{3}$ (an irrational number).

So $y=-\frac{a}{2}$ only when $t=0$; ie it never returns to its initial position.

