STEP 2014, P3, Q10 - Solution (3 pages; 29/5/20)

1st part

Referring to the diagrams, $T_1 = \frac{\lambda x}{a}$, $T_2 = -\frac{\lambda(x+y)}{a} \& T_3 = \frac{\lambda y}{a}$, by Hooke's law (thus $T_2 < 0$ and the force is a compression).

Then, applying N2L to X (noting that *x* increases as X moves to the right)

$$m\frac{d^2x}{dt^2} = T_2 - T_1 = \frac{\lambda}{a}(-x - y - x) = -\frac{\lambda}{a}(2x + y), \text{ as required.}$$

2nd part

For Y (noting that *y* increases as Y moves to the left):

$$m\frac{d^{2}y}{dt^{2}} = T_{2} - T_{3} = \frac{\lambda}{a}(-x - y - y) = -\frac{\lambda}{a}(2y + x)$$

[as would be expected from the symmetry]

3rd part

Hence
$$m \frac{d^2(x-y)}{dt^2} = -\frac{\lambda}{a}(2x+y-2y-x) = -\frac{\lambda}{a}(x-y)$$

 \Rightarrow SHM of $x - y$, with $x - y = Ccos(\omega t - \theta)$,
where $\omega^2 = \frac{\lambda}{ma}$

[The official sol'ns don't suggest that the SHM differential eq'n needs to be solved from 1st principles. Usually standard results such as this can just be quoted.]

When
$$t = 0, x = 0 \& y = -\frac{a}{2}$$
, so that $\frac{a}{2} = Ccos\theta$
Also, $\frac{d(x-y)}{dt} = -\omega Csin(\omega t - \theta)$,
and initially $\frac{dx}{dt} = \frac{dy}{dt} = 0$, so that $0 = \omega Csin\theta$, and hence $\theta = 0$,
and so $C = \frac{a}{2}$, giving $x - y = \frac{a}{2}cos(\omega t)$

4th part

Adding the differential eq'ns instead,

$$m\frac{d^2(x+y)}{dt^2} = -\frac{\lambda}{a}(2x+y+2y+x) = -\frac{3\lambda}{a}(x+y),$$

so that $x + y = Dcos(\omega_1 t - \phi)$, where $\omega_1^2 = \frac{3\lambda}{ma}$

fmng.uk

When
$$t = 0, x = 0$$
 & $y = -\frac{a}{2}$, so that $-\frac{a}{2} = D\cos\phi$
Also, $\frac{d(x+y)}{dt} = -\omega D\sin(\omega_1 t - \phi)$,

and initially $\frac{dx}{dt} = \frac{dy}{dt} = 0$, so that $0 = \omega D \sin \phi$, and hence $\phi = 0$, and so $D = -\frac{a}{2}$, giving $x + y = -\frac{a}{2} \cos(\omega_1 t)$

5th part

Subtracting
$$x - y = \frac{a}{2}\cos(\omega t)$$
 from $x + y = -\frac{a}{2}\cos(\omega_1 t)$:
 $2y = -\frac{a}{2}(\cos(\omega_1 t) + \cos(\omega t))$
Then $y = -\frac{a}{2} \Rightarrow \cos(\omega_1 t) + \cos(\omega t) = 2$
 $\Rightarrow \cos(\omega_1 t) = \cos(\omega t) = 1$
 $\Rightarrow t = 0$ or $\omega_1 t = 2m\pi$ and $\omega t = 2n\pi$ (where $m \& n$ are integers)
Then $\frac{\omega_1 t}{\omega t} = \frac{2m\pi}{2n\pi}$, and hence $\frac{\omega_1}{\omega} = \frac{m}{n}$ (a rational number).
But $\omega^2 = \frac{\lambda}{ma} \& \omega_1^2 = \frac{3\lambda}{ma}$, so that $\frac{\omega_1}{\omega} = \sqrt{3}$ (an irrational number).

So $y = -\frac{a}{2}$ only when t = 0; ie it never returns to its initial position.