STEP 2014, P2, Q12 - Solution (4 pages; 25/6/20)

(i) $P(\text{dying within following } \delta t \mid \text{fly lives to at least time } t)$

$$= \frac{P(\text{fly lives to at least time t and dies within following } \delta t)}{P(\text{fly lives to at least time } t)}$$

$$= \frac{F(t+\delta t) - F(t)}{1 - F(t)} \quad (A)$$
Now $f(t) = \lim_{\delta t \to 0} \frac{F(t+\delta t) - F(t)}{\delta t}$,
so that $F(t+\delta t) - F(t) \approx f(t)\delta t$ for small δt .
Also $h(t) = \frac{f(t)}{1 - F(t)}$,

so that (A)
$$\approx \frac{f(t)\delta t}{\left(\frac{f(t)}{h(t)}\right)} = h(t)\delta t$$
, as required.

(ii) When
$$F(t) = \frac{t}{a}$$
, $f(t) = \frac{d}{dt} \left(\frac{t}{a}\right) = \frac{1}{a}$

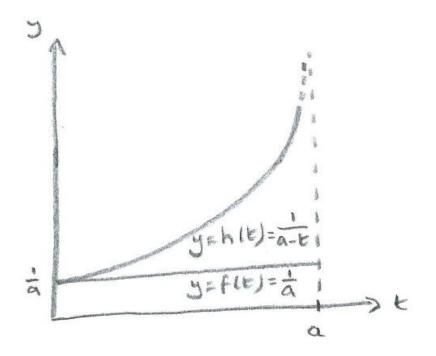
so that
$$h(t) = \frac{f(t)}{1 - F(t)} = \frac{\left(\frac{1}{a}\right)}{1 - \left(\frac{t}{a}\right)} = \frac{1}{a - t}$$

 $h(t) = \frac{1}{a-t}$ can be obtained from $f(t) = \frac{1}{t}$ by the following transformations:

translation of $\begin{pmatrix} -a \\ 0 \end{pmatrix}$ (to give $\frac{1}{t+a}$),

followed by relection in *y*-axis (to give $\frac{1}{-t+a}$)

Note that
$$h'(t) = \frac{1}{(a-t)^2}$$
, so that $h'(0) = \frac{1}{a^2}$



(iii)
$$\frac{1}{t} = \frac{f(t)}{1 - F(t)} \Rightarrow \int_{a}^{T} \frac{1}{t} dt = \int_{a}^{T} \frac{f(t)}{1 - F(t)} dt$$

 $\Rightarrow \ln\left(\frac{T}{a}\right) = \left[-\ln(1 - F(t))\right]_{a}^{T}$, as $f(t) = \frac{d}{dt}F(t)$
 $= -\ln(1 - F(T)) + \ln(1 - F(a))$
 $= \ln\left(\frac{1}{1 - F(T)}\right)$, as $F(a) = 0$
Hence $\frac{T}{a} = \frac{1}{1 - F(T)}$, so that $1 - F(T) = \frac{a}{T}$ and $F(t) = 1 - \frac{a}{t}$
Then $f(t) = \frac{d}{dt}\left(1 - \frac{a}{t}\right) = \frac{a}{t^{2}}$
[Check: $h(t) = \frac{f(t)}{1 - F(t)} = \frac{\left(\frac{a}{t^{2}}\right)}{\left(\frac{a}{t}\right)} = \frac{1}{t}$]

(iv) Suppose that h(t) = c (a constant) for t > b, and zero otherwise.

fmng.uk

Then, for
$$T > b$$
, $\int_{b}^{T} c dt = \int_{b}^{T} \frac{f(t)}{1-F(t)} dt = \left[-\ln(1-F(t))\right]_{b}^{T}$,
so that $c(T-b) = -\ln(1-F(T)) + \ln(1-F(b))$
 $= ln\left(\frac{1-F(b)}{1-F(T)}\right)$
and $e^{c(t-b)} = \frac{1-F(b)}{1-F(t)}$,
so that $1 - F(t) = (1 - F(b))e^{-c(t-b)}$
and differentiating:
 $-f(t) = (1 - F(b))e^{-c(t-b)}(-c)$
so that $f(t) = c(1 - F(b))e^{-c(t-b)}$ for $t > b$ (A)
Also, as $h(t) = \frac{f(t)}{1-F(t)}$ for $F(t) < 1$, and $h(t) = 0$ for $t \le b$,
it follows that $f(t) = 0$ for $t \le b$, and hence $F(b) = 0$.
So, from (A), $f(t) = ce^{-c(t-b)}$ for $t > b$,
and replacing c with k gives the required form,

and k has to be positive, in order for f(t) to be positive.

Suppose instead that $f(t) = ke^{-k(t-b)}$ for t > b (where k is a positive constant).

Then $F(t) = C - e^{-k(t-b)}$ As $t \to \infty$, $F(t) \to 1$, so that C = 1. Then $h(t) = \frac{f(t)}{1 - F(t)} = \frac{ke^{-k(t-b)}}{e^{-k(t-b)}} = k$, for t > b, as required.

(v)
$$\left(\frac{\lambda}{\theta^{\lambda}}\right)t^{\lambda-1} = \frac{f(t)}{1-F(t)} \Rightarrow \frac{\lambda}{\theta^{\lambda}}\int_0^T t^{\lambda-1} dt = \int_0^T \frac{f(t)}{1-F(t)} dt$$

fmng.uk

$$\Rightarrow \frac{\lambda}{\theta^{\lambda}} \left[\frac{1}{\lambda} t^{\lambda} \right]_{0}^{T} = \left[-\ln(1 - F(t)) \right]_{0}^{T}$$

$$\Rightarrow \frac{1}{\theta^{\lambda}} \left(T^{\lambda} \right) = -\ln(1 - F(T)) \text{, as } F(0) = 0$$
Hence $1 - F(T) = e^{-\left(\frac{T}{\theta}\right)^{\lambda}}$
and $F(t) = 1 - e^{-\left(\frac{t}{\theta}\right)^{\lambda}}$
Then $f(t) = \lambda \left(\frac{t}{\theta}\right)^{\lambda - 1} e^{-\left(\frac{t}{\theta}\right)^{\lambda}}$