STEP 2014, P2, Q11 - Solution (2 pages; 6/4/21)

[This configuration might be achieved if the part of the string RP (but excluding the ring and the particle) is resting on a surface inclined at an angle α with the vertical. This surface would thus introduce the constraint (or boundary condition) $\alpha = constant$, without affecting the eq'n of motion.]

Coordinates of P are $(x + (L - x)sin\alpha, -(L - x)cos\alpha)$

(i) 1st part

By N2L,
$$T\cos\alpha - kmg = km \frac{d^2}{dt^2} \{-(L-x)\cos\alpha\}$$

 $= km\ddot{x}cos\alpha$, as required.

2nd part

For P,
$$-Tsin\alpha = km \frac{d^2}{dt^2} \{x + (L - x)sin\alpha\}$$

= $km\ddot{x}(1 - sin\alpha)$

For R, $Tsin\alpha - T = m\ddot{x}$

(ii) 1st part

From the 2nd part of (i),

$$\frac{m\ddot{x}}{T} = \frac{-\sin\alpha}{k(1-\sin\alpha)} = \sin\alpha - 1$$
$$\Rightarrow k = \frac{\sin\alpha}{(1-\sin\alpha)^2} \text{ , as required}$$

2nd part

As seen in the diagram, $y = \frac{x}{(1-x)^2}$ can take any value k > 0 when 0 < x < 1, and we can set $x = sin\alpha$, where α is an acute angle.

(iii) From the 1st part of (i), $T\cos\alpha - kmg = km\ddot{x}\cos\alpha$, and from the 2nd part of (i), $T\sin\alpha - T = m\ddot{x}$

Hence
$$\frac{T}{m} = \frac{kg + k\ddot{x}cos\alpha}{cos\alpha} = \frac{\ddot{x}}{sin\alpha - 1}$$

 $\Rightarrow kg(sin\alpha - 1) + \ddot{x}kcos\alpha(sin\alpha - 1) = \ddot{x}cos\alpha$
 $\Rightarrow \ddot{x}cos\alpha\{k(sin\alpha - 1) - 1\} = kg(1 - sin\alpha)$
 $\Rightarrow \ddot{x}cos\alpha = \frac{kg(1 - sin\alpha)}{k(sin\alpha - 1) - 1} = \frac{kg(1 - sin\alpha)^2}{k(sin\alpha - 1)(1 - sin\alpha) - (1 - sin\alpha)}$
 $= \frac{gsin\alpha}{-sin\alpha - 1 + sin\alpha} = -gsin\alpha$, so that $\ddot{x} = -gtan\alpha$, as required.