STEP 2014, P2, Q11 - Solution (2 pages; 6/4/21)

[This configuration might be achieved if the part of the string RP (but excluding the ring and the particle) is resting on a surface inclined at an angle α with the vertical. This surface would thus introduce the constraint (or boundary condition) $\alpha=$ constant , without affecting the eq'n of motion.]

Coordinates of P are $(x+(L-x) \sin \alpha,-(L-x) \cos \alpha)$
(i) $1^{\text {st }}$ part

By N2L, $\left.T \cos \alpha-k m g=k m \frac{d^{2}}{d t^{2}}\{-(L-x) \cos \alpha)\right\}$
$=k m \ddot{x} \cos \alpha$, as required.

2nd part

For $\mathrm{P},-T \sin \alpha=k m \frac{d^{2}}{d t^{2}}\{x+(L-x) \sin \alpha\}$
$=k m \ddot{x}(1-\sin \alpha)$
For R, $T \sin \alpha-T=m \ddot{x}$
(ii) $1^{\text {st }}$ part

From the $2^{\text {nd }}$ part of (i),
$\frac{m \ddot{x}}{T}=\frac{-\sin \alpha}{k(1-\sin \alpha)}=\sin \alpha-1$
$\Rightarrow k=\frac{\sin \alpha}{(1-\sin \alpha)^{2}}$, as required

2nd part

As seen in the diagram, $y=\frac{x}{(1-x)^{2}}$ can take any value $k>0$ when $0<x<1$, and we can set $x=\sin \alpha$, where α is an acute angle.
(iii) From the 1st part of (i), $T \cos \alpha-k m g=k m \ddot{x} \cos \alpha$, and from the 2nd part of (i), $T \sin \alpha-T=m \ddot{x}$ Hence $\frac{T}{m}=\frac{k g+k \ddot{x} \cos \alpha}{\cos \alpha}=\frac{\ddot{x}}{\sin \alpha-1}$
$\Rightarrow k g(\sin \alpha-1)+\ddot{x} k \cos \alpha(\sin \alpha-1)=\ddot{x} \cos \alpha$
$\Rightarrow \ddot{x} \cos \alpha\{k(\sin \alpha-1)-1\}=k g(1-\sin \alpha)$
$\Rightarrow \ddot{x} \cos \alpha=\frac{k g(1-\sin \alpha)}{k(\sin \alpha-1)-1}=\frac{k g(1-\sin \alpha)^{2}}{k(\sin \alpha-1)(1-\sin \alpha)-(1-\sin \alpha)}$
$=\frac{g \sin \alpha}{-\sin \alpha-1+\sin \alpha}=-g \sin \alpha$, so that $\ddot{x}=-g \tan \alpha$, as required.

