STEP 2013, P3, Q9 - Solution (2 pages; 26/6/20)

1st part

Referring to the diagrams, define coordinate axes as follows:
0 is the centre of the sphere; X is the distance below 0 of the infinitesimal disc shown, and Y is its radius.

The required volume V is the volume of the hemisphere less V_{1}.
$V_{1}=\int_{0}^{x} \pi Y^{2} d X=\pi \int_{0}^{x}\left(R^{2}-X^{2}\right) d X$
$=\pi\left[R^{2} X-\frac{1}{3} X^{3}\right]_{0}^{x}=\pi\left(R^{2} x-\frac{1}{3} x^{3}\right)$
So $V=\frac{2}{3} \pi R^{3}-\pi\left(R^{2} x-\frac{1}{3} x^{3}\right)$
$=\frac{\pi}{3}\left(2 R^{3}-3 R^{2} x+x^{3}\right)$, as required.

2nd part

Noting that x is the distance above the level of the liquid, so that we are treating upwards as the positive direction:

$$
\begin{align*}
& \mathrm{N} 2 \mathrm{~L} \Rightarrow V \rho g-\frac{4}{3} \pi R^{3} \rho_{s} g=\frac{4}{3} \pi R^{3} \rho_{s} \ddot{x} \\
& \Rightarrow 4 R^{3} \rho_{s}(g+\ddot{x})=\frac{3}{\pi} V \rho g \\
& =\left(2 R^{3}-3 R^{2} x+x^{3}\right) \rho g, \text { as required. } \tag{A}
\end{align*}
$$

3rd part

$x=\frac{R}{2}, \ddot{x}=0 \Rightarrow 4 R^{3} \rho_{s} g=R^{3} \rho g\left(2-\frac{3}{2}+\frac{1}{8}\right)$
$\Rightarrow 32 \rho_{s}=\rho(16-12+1)=5 \rho$
$\Rightarrow \rho_{s}=\frac{5 \rho}{32}$

4th part

Let $y=x-\frac{R}{2}$ (where y is small).
Then (A) $\Rightarrow 4 R^{3}\left(\frac{5 \rho}{32}\right)(g+\ddot{y})=\left(2 R^{3}-3 R^{2}\left(y+\frac{R}{2}\right)+\left(y+\frac{R}{2}\right)^{3}\right) \rho g$
$\Rightarrow \frac{5 R^{3}}{8 g}(g+\ddot{y})=2 R^{3}-3 R^{2} y-\frac{3 R^{3}}{2}+o(y)+\frac{3 y R^{2}}{4}+\frac{R^{3}}{8}$
[$o(y)$ represents terms of order smaller than y; ie involving y^{2} or higher powers of y]
$\Rightarrow 5 R^{3}(g+\ddot{y})$
$=16 R^{3} g-24 R^{2} g y-12 R^{3} g+o(y)+6 y R^{2} g+R^{3} g$
$\Rightarrow 5 R^{3} \ddot{y}=-18 R^{2} g y+o(y)$
$\Rightarrow \ddot{y} \approx-\frac{18 g}{5 R} y$
$\Rightarrow \omega^{2}=\frac{18 g}{5 R}$, where the period of oscillations T satisfies $\omega T=2 \pi$,
so that $T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{\frac{18 g}{5 R}}}=2 \pi \sqrt{\frac{5 R}{18 g}}=\frac{\pi}{3} \sqrt{\frac{10 R}{g}}$

