STEP 2013, P3, Q7-Solution (3 pages; 1/7/20)
(i) 1st part
$\frac{d}{d x} E(x)=2 \frac{d y}{d x} \cdot \frac{d^{2} y}{d x^{2}}+2 y^{3} \frac{d y}{d x}=2 \frac{d y}{d x}\left(\frac{d^{2} y}{d x^{2}}+y^{3}\right)=0$, so that $E(x)$ is constant, as required.

2nd part

$E(0)=0^{2}+\frac{1}{2} \cdot 1^{4}=\frac{1}{2}$, so that $E(x)=\frac{1}{2}$ for all $x($ as $E(x)$ is constant)

Thus $\left(\frac{d y}{d x}\right)^{2}+\frac{1}{2} y^{4}=\frac{1}{2}$,
and so $y^{4}=1-2\left(\frac{d y}{d x}\right)^{2} \leq 1$,
and hence $|y| \leq 1$, as required.

(ii) 1st part

$\frac{d}{d x} E(x)=2 \frac{d v}{d x}\left(\frac{d^{2} v}{d x^{2}}\right)+2 \sinh x \cdot \frac{d v}{d x}$
$=2 \frac{d v}{d x}\left(\frac{d^{2} v}{d x^{2}}+\sinh x\right)$
$=2 \frac{d v}{d x}\left(-x \frac{d v}{d x}\right)$
$=-2 x\left(\frac{d v}{d x}\right)^{2} \leq 0$ for $x \geq 0$, as required.

2nd part

$2 \cosh v=E(x)-\left(\frac{d v}{d x}\right)^{2} \leq E(x) \leq E(0)$, for $x \geq 0$, as $\frac{d}{d x} E(x) \leq 0$
And $E(0)=0^{2}+e^{\ln 3}+e^{-\ln 3}=3+\frac{1}{3}=\frac{10}{3}$
So $2 \cosh v \leq \frac{10}{3}$, and hence $\cosh v \leq \frac{5}{3}$ (for $x \geq 0$), as required.
(iii) Trying the approach in the 1st two parts,
let $E(x)=\left(\frac{d w}{d x}\right)^{2}+2 \int w \cosh w+2 \sinh w d w$
(where the constant of integration is zero)
Then $\frac{d}{d x} E(x)=2\left(\frac{d w}{d x}\right) \cdot \frac{d^{2} w}{d x^{2}}+2(w \cosh w+2 \sinh w) \cdot \frac{d w}{d x}$
$=2 \frac{d w}{d x}\left(\frac{d^{2} w}{d x^{2}}+w \cosh w+2 \sinh w\right)$
$=-2 \frac{d w}{d x}(5 \cosh x-4 \sinh x-3)\left(\frac{d w}{d x}\right)$

Result to prove: $f(x)=5 \cosh x-4 \sinh x-3 \geq 0$, for $x \geq 0$
$f^{\prime}(x)=5 \sinh x-4 \cosh x$
and so $f^{\prime}(x)=0$ when $5 \sinh x=4 \cosh x$
$\Rightarrow 25 \sinh ^{2} x=16 \cosh ^{2} x=16\left(\sinh ^{2} x+1\right)$
$\Rightarrow \sinh ^{2} x=\frac{16}{9} \Rightarrow \sinh x=\frac{4}{3}($ for $x \geq 0)$
And $f^{\prime \prime}(x)=5 \cosh x-4 \sinh x$
$=4(\cosh x-\sinh x)+\cosh x>\cosh x>0$
(as $\cosh x>\sinh x$ for all x)
Hence $f(x)$ has a single (local) minimum when $\sinh x=\frac{4}{3}$
Then $\cosh ^{2} x=\sinh ^{2} x+1=\frac{16}{9}+1=\frac{25}{9}$, so that $\cosh x=\frac{5}{3}$,
and the minimum value of $f(x)$ is $5\left(\frac{5}{3}\right)-4\left(\frac{4}{3}\right)-3=\frac{25-16-9}{3}=0$
So, as there is a single minimum, $f(x) \geq 0$, for $x \geq 0$, as required to be proved.
[Alternatively, $f(x)=\frac{5}{2}\left(e^{x}+e^{-x}\right)-\frac{4}{2}\left(e^{x}-e^{-x}\right)-3$
$\left.=\frac{1}{2} e^{-x}\left(e^{2 x}+9-6 e^{x}\right)=\frac{1}{2} e^{-x}\left(e^{x}-3\right)^{2} \geq 0\right]$
Hence $\frac{d}{d x} E(x) \leq 0($ for $x \geq 0)$
And from (1),
$E(x)=\left(\frac{d w}{d x}\right)^{2}+2 \int w \cosh w+2 \sinh w d w$
$=\left(\frac{d w}{d x}\right)^{2}+2 w \sinh w-2 \cosh w+4 \cosh w$
$=\left(\frac{d w}{d x}\right)^{2}+2 w \sinh w+2 \cosh w$
Then $2 w \sinh w+2 \cosh w=E(x)-\left(\frac{d w}{d x}\right)^{2} \leq E(x)$
And $E(0)=\left(\frac{1}{\sqrt{2}}\right)^{2}+2=\frac{5}{2}$
Thus $2 w \sinh w+2 \cosh w \leq E(x) \leq E(0)=\frac{5}{2}\left(\right.$ as $\left.\frac{d}{d x} E(x) \leq 0\right)$
$\Rightarrow \cosh w \leq \frac{5}{4}-w \sinh w \leq \frac{5}{4}($ for $x \geq 0)$,
as $w \& \sinh w$ always have the same sign (unless both are zero), as required.

