STEP 2013, P3, Q7 - Solution (3 pages; 1/7/20)

(i) 1st part

 $\frac{d}{dx}E(x) = 2\frac{dy}{dx} \cdot \frac{d^2y}{dx^2} + 2y^3\frac{dy}{dx} = 2\frac{dy}{dx}\left(\frac{d^2y}{dx^2} + y^3\right) = 0$, so that E(x) is constant, as required.

2nd part

$$E(0) = 0^2 + \frac{1}{2} \cdot 1^4 = \frac{1}{2}$$
, so that $E(x) = \frac{1}{2}$ for all x (as $E(x)$ is constant)

Thus $\left(\frac{dy}{dx}\right)^2 + \frac{1}{2}y^4 = \frac{1}{2}$, and so $y^4 = 1 - 2\left(\frac{dy}{dx}\right)^2 \le 1$, and hence $|y| \le 1$, as required.

(ii) 1st part

$$\frac{d}{dx}E(x) = 2\frac{dv}{dx}\left(\frac{d^2v}{dx^2}\right) + 2sinhx.\frac{dv}{dx}$$
$$= 2\frac{dv}{dx}\left(\frac{d^2v}{dx^2} + sinhx\right)$$
$$= 2\frac{dv}{dx}\left(-x\frac{dv}{dx}\right)$$
$$= -2x\left(\frac{dv}{dx}\right)^2 \le 0 \text{ for } x \ge 0, \text{ as required.}$$

2nd part

 $2coshv = E(x) - \left(\frac{dv}{dx}\right)^2 \le E(x) \le E(0), \text{ for } x \ge 0, \text{ as } \frac{d}{dx}E(x) \le 0$ And $E(0) = 0^2 + e^{\ln 3} + e^{-\ln 3} = 3 + \frac{1}{3} = \frac{10}{3}$ So $2coshv \le \frac{10}{3}$, and hence $coshv \le \frac{5}{3}$ (for $x \ge 0$), as required. (iii) Trying the approach in the 1st two parts,

let
$$E(x) = \left(\frac{dw}{dx}\right)^2 + 2\int w \cosh w + 2\sinh w \, dw$$
 (1)

(where the constant of integration is zero)

Then
$$\frac{d}{dx}E(x) = 2\left(\frac{dw}{dx}\right) \cdot \frac{d^2w}{dx^2} + 2(wcoshw + 2sinhw) \cdot \frac{dw}{dx}$$

= $2\frac{dw}{dx}\left(\frac{d^2w}{dx^2} + wcoshw + 2sinhw\right)$
= $-2\frac{dw}{dx}(5coshx - 4sinhx - 3)\left(\frac{dw}{dx}\right)$

Result to prove:
$$f(x) = 5coshx - 4sinhx - 3 \ge 0$$
, for $x \ge 0$
 $f'(x) = 5sinhx - 4coshx$
and so $f'(x) = 0$ when $5sinhx = 4coshx$
 $\Rightarrow 25sinh^2x = 16cosh^2x = 16(sinh^2x + 1)$
 $\Rightarrow sinh^2x = \frac{16}{9} \Rightarrow sinhx = \frac{4}{3}$ (for $x \ge 0$)
And $f''(x) = 5coshx - 4sinhx$
 $= 4(coshx - sinhx) + coshx > coshx > 0$
(as $coshx > sinhx$ for all x)
Hence $f(x)$ has a single (local) minimum when $sinhx = \frac{4}{3}$
Then $cosh^2x = sinh^2x + 1 = \frac{16}{9} + 1 = \frac{25}{9}$, so that $coshx = \frac{5}{3}$,
and the minimum value of $f(x)$ is $5(\frac{5}{3}) - 4(\frac{4}{3}) - 3 = \frac{25-16-9}{3} = 0$
So, as there is a single minimum, $f(x) \ge 0$, for $x \ge 0$, as required
to be proved.

[Alternatively,
$$f(x) = \frac{5}{2}(e^x + e^{-x}) - \frac{4}{2}(e^x - e^{-x}) - 3$$

fmng.uk

$$= \frac{1}{2}e^{-x}(e^{2x} + 9 - 6e^{x}) = \frac{1}{2}e^{-x}(e^{x} - 3)^{2} \ge 0]$$

Hence $\frac{d}{dx}E(x) \le 0$ (for $x \ge 0$)
And from (1),
 $E(x) = \left(\frac{dw}{dx}\right)^{2} + 2\int w \cosh w + 2\sinh w \, dw$
 $= \left(\frac{dw}{dx}\right)^{2} + 2w \sinh w - 2\cosh w + 4\cosh w$
 $= \left(\frac{dw}{dx}\right)^{2} + 2w \sinh w + 2\cosh w$
Then $2w \sinh w + 2\cosh w = E(x) - \left(\frac{dw}{dx}\right)^{2} \le E(x)$
And $E(0) = \left(\frac{1}{\sqrt{2}}\right)^{2} + 2 = \frac{5}{2}$

Thus $2wsinhw + 2coshw \le E(x) \le E(0) = \frac{5}{2} \left(as \frac{d}{dx} E(x) \le 0 \right)$ $\Rightarrow coshw \le \frac{5}{4} - wsinhw \le \frac{5}{4}$ (for $x \ge 0$),

as *w* & *sinhw* always have the same sign (unless both are zero), as required.