STEP 2013, Paper 2, Q1 - Sol'n (4 pages; 11/6/20)
(i) 1st part

When $y=m x$ touches $y=\ln x$, the gradient of $y=\ln x$ equals m, so that $\frac{1}{x}=m$. Also, $m x=\ln x$.

So $m\left(\frac{1}{m}\right)=\ln \left(\frac{1}{m}\right)$, and hence $\frac{1}{m}=e$, and $m=\frac{1}{e}$
and part

As $m x=\ln x$ at the points of intersection,
$m=\frac{\ln a}{a} \& m=\frac{\ln b}{b}$, so that $b \ln a=a \ln b$,
and hence $\ln \left(a^{b}\right)=\ln \left(b^{a}\right)$,
so that $a^{b}=b^{a}$, as required.

3rd part

At the point where $y=m x$ touches $y=\ln x, x=\frac{1}{m}$
(from the working to the 1 st part), so that $x=e$.

Thus from the previous diagram we see that $a<e<b$, as required.

(ii)

Referring to the diagram, in order for the line $y=m x+c$ (with $c>0$) to intersect $y=\ln x$ twice, m must be positive, and p must be greater than 1.
$p^{q}>q^{p} \Leftrightarrow q \ln p>p \ln q \Leftrightarrow \frac{\ln p}{p}>\frac{\ln q}{q}$
As $\frac{\ln p}{p}$ is the gradient of the line from the Origin to the point ($p, \ln p$), and similarly for q, we can see from the diagram that $\frac{\ln p}{p}>\frac{\ln q}{q}$ (consider the triangle OPQ), and so it follows that $p^{q}>$ q^{p}, as required.
(iii) 1st part

From the 3rd part of (i), $y=\frac{1}{e} x$ touches $y=\ln x$ when $x=e$.
Then, we can see from the diagram that, as $p \geq e$, the tangent to $y=\ln x$ at $x=p$ will be flatter than the tangent at $x=e$, and so the tangent at $x=p$ will cross the y-axis at a positive value of y. As the line though PQ is flatter still, it will also cross the y-axis at a positive value of y.

2nd part

Setting $p=e$ and $q=\pi$, (ii) $\Rightarrow e^{\pi}>\pi^{e}$.
(iv) From the earlier parts, the gradient of the tangent to $y=\ln x$ at $x=e$ is $\frac{1}{e}$. And $\frac{\ln q-\ln p}{q-p}=\frac{1}{e} \Rightarrow P Q$ is parallel to this tangent.

And $q^{p}>p^{q} \Leftrightarrow p \ln q>q \ln p \Leftrightarrow \frac{\ln q}{q}>\frac{\ln p}{p}$

First of all, note that $e \leq p<q$ isn't possible, as PQ will be flatter than the tangent at $x=e$.

And $p<q \leq e$ isn't possible, as PQ will be steeper than the tangent at $x=e$.

So the only possible scenarios are:
Case 1: $1 \leq p<e<q$ (as in the diagram above)
Case 2: $0<p<1<e<q$

Case 1: $1 \leq \boldsymbol{p}<\boldsymbol{e}<\boldsymbol{q}$
From the diagram, considering the triangle OPQ, we can see that OQ is steeper than OP; ie $\frac{\ln q}{q}>\frac{\ln p}{p}$; therefore $q^{p}>p^{q}$.

Case 2: $0<p<1<e<\boldsymbol{q}$
The same argument applies (in this case, OP has a negative gradient, and is therefore clearly less steep than OQ).

