STEP 2013, Paper 2, Q13 - Sol'n (3 pages; 11/6/20)
(i) 1st part
$P(A=1)=P(1$ st throw is H$) P(2$ nd throw is H$)$
$+P(1$ st throw is T$) P(2$ nd throw is T$)$
$=p^{2}+q^{2}$

2nd part

$P(S=1)=P(1$ st throw is H$) P(2$ nd throw is T$)$
$+P(1$ st throw is T$) P(2$ nd throw is H$)$
$=2 p q$

3rd part

$P(A=1)-P(S=1)=p^{2}+q^{2}-2 p q=(p-q)^{2}>0$, as $p \neq q$
So $P(S=1)<P(A=1)$, as required.
(ii) 1st part
$P(S=2)=P(H H T)+P(T T H)$
$=p^{2} q+q^{2} p=p q(p+q)=p q$
And $P(A=2)=P(H T T)+P(T H H)$
$=p q^{2}+q p^{2}=p q(q+p)=p q$
Thus $P(S=2)=P(A=2)$, as required.
2nd part
$P(S=3)=P(H H H T)+P(T T T H)$
$=p^{3} q+q^{3} p=p q\left(p^{2}+q^{2}\right)$
And $P(A=3)=P(H T H H)+P(T H T T)$
$=p q p^{2}+q p q^{2}=p q\left(p^{2}+q^{2}\right)$
Thus $P(S=3)=P(A=3)$.

(iii) 1st part

$P(S=2 n)=P(H H H H \ldots[2 n$ times $] T)$
$+P($ TTTT $\ldots[2 n$ times $] H)$
$=p^{2 n} q+q^{2 n} p$
And $P(A=2 n)=P(H T H T \ldots[2 n$ items $] T)$
$+P($ THTH $\ldots[2 n$ items $] H)$
$=(p q)^{n} q+(q p)^{n} p$
Then $P(S=2 n)-P(A=2 n)$
$=p^{2 n} q+q^{2 n} p-(p q)^{n} q-(q p)^{n} p$
$=p^{n} q\left(p^{n}-q^{n}\right)+q^{n} p\left(q^{n}-p^{n}\right)$
$=\left(p^{n}-q^{n}\right)\left(p^{n} q-q^{n} p\right)$
$=\left(p^{n}-q^{n}\right) p q\left(p^{n-1}-q^{n-1}\right)$
If $n=2,(\mathrm{~A})=\left(p^{2}-q^{2}\right) p q(p-q)$
$=(p-q)^{2}(p+q) p q>0$, as $(p-q)^{2}>0($ as $p \neq q)$
If $n>2,(\mathrm{~A})=(p-q)\left(p^{n-1}+q p^{n-2}+\cdots+q^{n-1}\right) p q$

$$
\cdot(p-q)\left(p^{n-2}+q p^{n-3}+\cdots+q^{n-2}\right)>0, \text { similarly } .
$$

so that $P(S=2 n)>P(A=2 n)$ (for $n>1)$, as required.

2nd part

$P(S=2 n+1)=P(H H H H \ldots[2 n+1$ times $] T)$
$+P($ TTTT $\ldots[2 n+1$ times $] H)$
$=p^{2 n+1} q+q^{2 n+1} p$
And $P(A=2 n+1)=P(H T H T \ldots H[2 n+1$ items $] H)$
$+P($ THTH $\ldots T[2 n+1$ items $] T)$
$=(p q)^{n} p^{2}+(q p)^{n} q^{2}$
Then $P(S=2 n+1)-P(A=2 n+1)$
$=p^{2 n+1} q+q^{2 n+1} p-(p q)^{n} p^{2}-(q p)^{n} q^{2}$
$=p^{n+2} q\left(p^{n-1}-q^{n-1}\right)+q^{n+2} p\left(q^{n-1}-p^{n-1}\right)$
$=p q\left(p^{n+1}-q^{n+1}\right)\left(p^{n-1}-q^{n-1}\right)>0$, by the same reasoning.
Thus, $P(S=2 n+1)>P(A=2 n+1)$ for $n>1$.

