STEP 2013, P1, Q1 - Sol'n (2 pages; 19/6/20)
(i) $y^{2}+3 y-\frac{1}{2}=0 \Rightarrow 2 y^{2}+6 y-1=0$
$\Rightarrow y=\frac{-6 \pm \sqrt{36+8}}{4}=\frac{-3+\sqrt{11}}{2}$ (rejecting -ve root, as $y=\sqrt{x}>0$)
So $x=\frac{(-3+\sqrt{11})^{2}}{4}=\frac{1}{4}(9+11-6 \sqrt{11})=5-\frac{3}{2} \sqrt{11}$
(ii) (a) Let $y=\sqrt{x+2}$, so that $\left(y^{2}-2\right)+10 y-22=0$
$\Rightarrow y^{2}+10 y-24=0$
$\Rightarrow y=\frac{-10 \pm \sqrt{100+96}}{2}=-5+\frac{14}{2}=2$
(rejecting -ve root, as $y=\sqrt{x+2}>0$)
$\Rightarrow x=y^{2}-2=2$
(b) Let $y=\sqrt{2 x^{2}-8 x-3}$, so that $2 x^{2}-8 x-3=y^{2}$
$\Rightarrow x^{2}-4 x=\frac{1}{2}\left(y^{2}+3\right)$ [fortunately]
So the eq' n in the question becomes $\frac{1}{2}\left(y^{2}+3\right)+y-9=0$

$$
\begin{aligned}
& \Rightarrow y^{2}+2 y-15=0 \\
& \Rightarrow(y+5)(y-3)=0 \\
& \Rightarrow y=3(\text { as } y>0) \\
& \Rightarrow 2 x^{2}-8 x-3=9, \text { from (A) } \\
& \Rightarrow 2 x^{2}-8 x-12=0 \\
& \Rightarrow x^{2}-4 x-6=0
\end{aligned}
$$

$\Rightarrow x=\frac{4 \pm \sqrt{16+24}}{2}=2 \pm \sqrt{10}$
Checking for spurious sol'ns:
$x^{2}=4+10 \pm 4 \sqrt{10}$
So, if $x=2+\sqrt{10}$, LHS of the eq'n in the question is
$14+4 \sqrt{10}-4(2+\sqrt{10})+3-9$, which equals 0
If $x=2-\sqrt{10}$, LHS of the eq' n in the question is
$14-4 \sqrt{10}-4(2-\sqrt{10})+3-9$, which also equals 0
So $x=2 \pm \sqrt{10}$ are the real sol'ns.
[The Examiner's Report says that it is 'very easy' to explain
(without direct verification) that the two roots are correct, but I'm not sure what they have in mind.]

