STEP 2013, Paper 1, Q12 - Solution (2 pages; 7/4/21)
(i) 1st part
$n=k=3$
Let the 3 types of tablet be $A, B \& C$. Then the tablets in the container are AAABBBCCC.

P (one tablet of each type is selected on the 1 st day)
$=\mathrm{P}$ (any tablet is chosen initially)
$\times \mathrm{P}($ a different tablet is then chosen $)$
$\times \mathrm{P}$ (a tablet different from the 1 st 2 is then chosen $)$
$=1 \times \frac{6}{8} \times \frac{3}{7}=\frac{9}{28}$, as required.
[Alternative method:
Prob. $=\frac{\text { no. of ways of obtaining the letters ABC in some order }}{\text { no. of ways of placing } 3 \text { letters out of } 9(\text { where order matters })}$
$\left.=\frac{\text { no. of ways of obtaining } A B C \text { (in that order }) \times 3!}{9 \times 8 \times 7}=\frac{3 \times 3 \times 3 \times 3!}{9 \times 8 \times 7}=\frac{9}{28}\right]$

2nd part

By symmetry, Prob. $=\frac{9}{28}$ also.
(ii) n days, 3 tablets

The tablets in the container are $\mathrm{A} . . . \mathrm{AB} . . . \mathrm{BC} . . . \mathrm{C}$
P (one tablet of each type is selected on the 1 st day)
$=\mathrm{P}$ (any tablet is chosen initially)
$\times \mathrm{P}($ a different tablet is then chosen $)$
$\times \mathrm{P}($ a tablet different from the 1 st 2 is then chosen $)$
$=1 \times \frac{2 n}{3 n-1} \times \frac{n}{3 n-2}=\frac{2 n^{2}}{(3 n-1)(3 n-2)}$
[Alternative method:

$$
\begin{aligned}
& \text { Prob. }=\frac{n o . \text { of ways of obtaining the letters ABC in some order }}{n o . \text { of ways of placing } 3 \text { letters out of } 3 n(\text { where order matters })} \\
& =\frac{\text { no. of ways of obtaining ABC (in that order }) \times 3!}{3 n(3 n-1)(3 n-2)} \\
& \left.=\frac{n \times n \times n \times 3!}{3 n(3 n-1)(3 n-2)}=\frac{2 n^{2}}{(3 n-1)(3 n-2)}\right] \\
& \text { (iii) } 1^{\text {st }} \text { part }
\end{aligned}
$$

n days, 2 tablets
The tablets in the container are $\mathrm{A} . . . \mathrm{AB}$... B
P (one tablet of each type is selected on the 1st day)
$=\mathrm{P}($ any tablet is chosen initially $) \times$
P (a different tablet is then chosen)

$$
=1 \times \frac{n}{2 n-1}
$$

P (one tablet of each type is selected on the 2nd day
| one tablet of each type is selected on the 1 st day $)=1 \times \frac{n-1}{2 n-3}$
And so P (one tablet of each type is selected on each day)
$=\frac{n}{2 n-1} \times \frac{n-1}{2 n-3} \times \frac{n-2}{2 n-5} \times \ldots \times \frac{1}{1}$
[Note that there are n items multiplied together on the top, and also n items multiplied together on the bottom.]
$=\frac{n!(2 n)(2 n-2) \ldots 2}{(2 n)!}=\frac{(n!)^{2} 2^{n}}{(2 n)!}$
2nd part Applying Stirling's approximation,
$\frac{(n!)^{2} 2^{n}}{(2 n)!} \approx \frac{2 n \pi\left(\frac{n}{e}\right)^{2 n} 2^{n}}{\sqrt{2(2 n) \pi}\left(\frac{2 n}{e}\right)^{2 n}}=2^{-n} \sqrt{n \pi}$, as required.

