STEP 2011, Paper 1, Q10 - Solution (3 pages; 8/4/21)
$1^{\text {st }}$ part
[The question only makes any sense if B is dropped after A has been dropped.]

As the bounce is perfectly elastic, no energy is lost by A .
Let $M \& m$ be the masses of A and B , and $u_{A} \& u_{B}$ their speeds at the point of collision.

Then, by conservation of energy (assuming no air resistance!),
$M g d=\frac{1}{2} M u_{A}{ }^{2}$ and $m g d=\frac{1}{2} m u_{B}{ }^{2}$, where d is the distance from P to the point of collision.

Hence, $g d=\frac{1}{2} u_{A}{ }^{2}$ and $g d=\frac{1}{2} u_{B}{ }^{2}$, so that $u_{A}{ }^{2}=u_{B}{ }^{2}$;
ie the two speeds are the same.
$2{ }^{\text {nd }}$ part

before

$-4 \uparrow$
 B

$u \uparrow$ (M) A $\uparrow v_{A}$

By conservation of momentum, $M u+m(-u)=M v_{A}+m v_{B}$ and by Newton's law of restitution, $v_{B}-v_{A}=u-(-u)$
[We want to show that $v_{A}>0$. It is self-evident that $v_{B}>v_{A}$, by the nature of the collision, but the official sol'ns seem to think that we need to prove that $v_{B}>0$.]

Eliminating $v_{B}:(M-m) u=M v_{A}+m\left(2 u+v_{A}\right)$
$\Rightarrow v_{A}=\frac{(M-3 m) u}{M+m}>0$, as $M>3 m$

$3^{\text {rd }}$ part

Method 1

The additional energy given to B as a result of the collision is
$\frac{1}{2} m\left(v_{B}{ }^{2}-u^{2}\right)$
[It doesn't matter that the direction of motion of B has been reversed. Had B been moving downwards with speed v_{B} after the collision, then it would be moving upwards with speed v_{B} by the time it returned to the same point, after bouncing on the plane assuming conservation of energy.]

If h_{1} is the extra height gained by B, as a result of the extra energy, then $m g h_{1}=\frac{1}{2} m\left(v_{B}{ }^{2}-u^{2}\right)$, so that $h_{1}=\frac{v_{B}^{2}-u^{2}}{2 g}$

From the $2^{\text {nd }}$ part, $v_{B}=2 u+v_{A}=2 u+\frac{(M-3 m) u}{M+m}$,
so that $v_{B}{ }^{2}=\frac{u^{2}}{(M+m)^{2}}(2(M+m)+(M-3 m))^{2}$
$=\frac{u^{2}}{(M+m)^{2}}(3 M-m)^{2}$
Then $h_{1}=\frac{u^{2}}{2 g(M+m)^{2}}\left((3 M-m)^{2}-(M+m)^{2}\right)$
$=\frac{u^{2}}{2 g(M+m)^{2}}\left(8 M^{2}-8 M m\right)$
$=\frac{4 u^{2} M(M-m)}{g(M+m)^{2}}$
and so the maximum height attained by B (before the $2^{\text {nd }}$ collision) is
$h+\frac{4 u^{2} M(M-m)}{g(M+m)^{2}}$, as required.

Method 2

Let Q be the point where the particles collide, and let R be the highest point reached by B.

Then, from ${ }^{\prime} v^{2}=u^{2}+2 a s^{\prime}$,
$0=v_{B}{ }^{2}+2(-g) Q R$
From the $2^{\text {nd }}$ part, $v_{B}=2 u+v_{A}=2 u+\frac{(M-3 m) u}{M+m}$,
so that $v_{B}{ }^{2}=\frac{u^{2}}{(M+m)^{2}}(2(M+m)+(M-3 m))^{2}$
$=\frac{u^{2}}{(M+m)^{2}}(3 M-m)^{2}$
And the required maximum height is $H=h-P Q+Q R$, where $P Q=d$ from the $1^{\text {st }}$ part, with $g d=\frac{1}{2} u_{B}{ }^{2}=\frac{1}{2} u^{2}$

So $H=h-\frac{u^{2}}{2 g}+\frac{v_{B}{ }^{2}}{2 g}=h+\frac{u^{2}}{2 g}\left\{\frac{1}{(M+m)^{2}}(3 M-m)^{2}-1\right\}$
$=h+\frac{u^{2}}{2 g(M+m)^{2}}\left((3 M-m)^{2}-(M+m)^{2}\right)$
$=h+\frac{u^{2}}{2 g(M+m)^{2}}\left(8 M^{2}-8 M m\right)$
$=h+\frac{4 u^{2} M(M-m)}{g(M+m)^{2}}$
[The official sol'ns claim that we need to show that the $2^{\text {nd }}$ collision occurs after B has attained its maximum height. But $v_{B}>v_{A}$ (by the nature of the collision), so that this fact is self-evident.]

