STEP 2010, Paper 3, Q12 - Solution (2 pages; 9/4/21)
1st part
$S=1+(1+d) r+(1+2 d) r^{2}+\cdots+(1+n d) r^{n}+\cdots$
Then $S-r S=1+r(1+d-1)+r^{2}(1+2 d-1-d)$
$+\cdots+r^{n}(1+n d-1-(n-1) d)+\cdots$
$=1+d r+d r^{2}+\cdots+d r^{n}+\cdots$
so that $S(1-r)=1+\frac{d r}{1-r}$, and hence $S=\frac{1}{1-r}+\frac{r d}{(1-r)^{2}}$, as required.

2nd part

[This is just the expected value of a Geometric variable.]
Expected number of shots it takes for Arthur to hit the target
$\sum_{k=1}^{\infty} k(1-a)^{k-1} a=a+2(1-a) a+3(1-a)^{2} a+\cdots$
$+k(1-a)^{k-1} a+\cdots$
$=a\left\{1+2(1-a)+\cdots+k(1-a)^{k-1}+\cdots\right\}$
$=a S$, where $r=1-a \& d=1$.
so that the expected number of shots is
$a\left\{\frac{1}{a}+\frac{1-a}{a^{2}}\right\}=a \cdot \frac{1}{a^{2}}=\frac{1}{a}$, as required.
[Alternatively: $\sum_{k=1}^{\infty} k(1-a)^{k-1} a=-a \frac{d}{d a} \sum_{k=1}^{\infty}(1-a)^{k}$
$\left.=-a \frac{d}{d a}\left\{\frac{1-a}{1-(1-a)}\right\}=-a \frac{d}{d a}\left\{\frac{1-a}{a}\right\}=-a(-1) a^{-2}=\frac{1}{a}\right]$

3rd part

$\alpha=\sum_{r=1}^{\infty}\{P($ neither person has won before Arthur's rth attempt)
$\times \mathrm{P}($ Arthur then hits the target on the rth attempt $)\}$
$=\sum_{r=1}^{\infty}\left(a^{\prime} b^{\prime}\right)^{r-1} a=\frac{a}{1-a^{\prime} b^{\prime}}$, as required
(the sum to infinity of a Geometric series with common ratio $a^{\prime} b^{\prime}$)
[The official sol'n uses an elegant recurrence argument:
$\alpha=\mathrm{P}(\mathrm{A}$ wins on 1 st attempt $)+\mathrm{P}($ wins after 1 st attempt $)$
$=a+a^{\prime} b^{\prime} \alpha$, so that $\alpha\left(1-a^{\prime} b^{\prime}\right)=a$, and hence $\left.\alpha=\frac{a}{1-a^{\prime} b^{\prime}}\right]$

4th part

As Arthur or Boadicea will eventually hit the target, one of them must win the contest, and so $\alpha+\beta=1$,
and hence $\beta=1-\frac{a}{1-a^{\prime} b^{\prime}}=\frac{1-a^{\prime} b^{\prime}-a}{1-a^{\prime} b^{\prime}}=\frac{a^{\prime}-a^{\prime} b^{\prime}}{1-a^{\prime} b^{\prime}}=\frac{a^{\prime}\left(1-b^{\prime}\right)}{1-a^{\prime} b^{\prime}}$
$=\frac{a^{\prime} b}{1-a^{\prime} b^{\prime}}$
[Alternatively,
$\beta=\sum_{r=1}^{\infty}\{P($ neither person has won before Boadicea's rth attempt)
$\times \mathrm{P}($ Boadicea then hits the target on the rth attempt $)\}$
$=\sum_{r=1}^{\infty}\left[\left(a^{\prime} b^{\prime}\right)^{r-1} a^{\prime}\right] b$
$\left.=\frac{a^{\prime} b}{1-a^{\prime} b^{\prime}}\right]$
$5^{\text {th }}$ part
Expected no. of shots
$=P(A$ wins $) \times$ Expected no. of shots, given that A wins
$+\mathrm{P}(\mathrm{B}$ wins $) \times$ Expected no. of shots, given that B wins
$=\alpha \cdot \frac{1}{\mathrm{a}}+\beta \cdot \frac{1}{\mathrm{~b}}$ or $\frac{\alpha}{a}+\frac{\beta}{b}$, as required.

