STEP 2009, Paper 1, Q13 - Solution (2 pages; 11/4/21)

(i) Examples : GGGB...B, B...BGGGB...B
$P(G G G B \ldots B)=\frac{3}{n+3} \cdot \frac{2}{n+2} \cdot \frac{1}{n+1}$
The different possibilities are all equally likely (to find $P(B \ldots B G G G B \ldots B)$, where the Gs occur in positions
$r, r+1 \& r+2$, we can first of all consider the probability of a girl being in the r th position etc).

So required probability $=\frac{3}{n+3} \cdot \frac{2}{n+2} \cdot \frac{1}{n+1} \cdot(n+1)$,
as there are $n+1$ possible positions for the $1^{\text {st }} G$ (positions 1 to $n+1$)
ie $\frac{6}{(n+2)(n+3)}$
[Check: When $n=0, \frac{6}{(n+2)(n+3)}=1$; when $n=1, \frac{6}{(n+2)(n+3)}=\frac{1}{2}$, and $P(G G G B$ or $B G G G)=\frac{1}{2}$, as these are half of the possible arrangements (the other two being $G B G G \& G G B G$).]
(ii) Let $P=G B$

Case 1: The last child is not a girl.
Examples: $B B P B B P B P, B B P P P B$
Case 2: The last child is a girl.
Examples: $B B P B B P B G, B B P B B P G$
The number of possibilities for Case 1 (with n boys $\& 3$ girls, and therefore 3 Ps \& $(n-3) B s)$ is $\binom{n}{3}$

The number of possibilities for Case 2
(with 2 Ps , $(n-2)$ Bs \& the G at the end) is $\binom{n}{2}$
All the possibilities have probability $\frac{3}{n+3} \cdot \frac{2}{n+2} \cdot \frac{1}{n+1}$, as in (i).
So $P(K=1)=\frac{6}{(n+3)(n+2)(n+1)}\left\{\binom{n}{3}+\binom{n}{2}\right\}$
$=\frac{6}{(n+3)(n+2)(n+1)}\left\{\frac{n(n-1)(n-2)}{3!}+\frac{n(n-1)}{2!}\right\}$
$=\frac{n(n-1)(n-2+3)}{(n+3)(n+2)(n+1)}$
$=\frac{n(n-1))}{(n+3)(n+2)}$
(iii) $E(K)=P(K=1)+2 P(K=2)+3 P(K=3)$
and $P(K=2)=1-P(K=1)-P(K=3)$
So $E(K)=2-P(K=1)+P(K=3)$
$=2-\frac{n(n-1)}{(n+2)(n+3)}+\frac{6}{(n+2)(n+3)}$
$=\frac{2(n+2)(n+3)-n(n-1)+6}{(n+2)(n+3)}$
$=\frac{n^{2}+11 n+18}{(n+2)(n+3)}=\frac{(n+2)(n+9)}{(n+2)(n+3)}=\frac{n+9}{n+3}$

