STEP 2009, Paper 1, Q12 - Solution (2 pages; 9/4/21)

[Inequalities and equations are often best rearranged into the form $\dots \ge 0$ etc.]

Consider $x^2 + y^2 - 2xy = (x - y)^2$ (A)

As (A) cannot be –ve, $x^2 + y^2 - 2xy \ge 0$ and hence $x^2 + y^2 \ge 2xy$

[With 'show / prove that' questions, the proof has to be completely convincing.]

(i)

	1	2
red	а	b
blue	b	а

Prob(same colour) = $\frac{a}{a+b} \times \frac{b}{a+b} + \frac{b}{a+b} \times \frac{a}{a+b} = \frac{2ab}{(a+b)^2}$

Prob(different colours) $= \frac{a}{a+b} \times \frac{a}{a+b} + \frac{b}{a+b} \times \frac{b}{a+b} = \frac{a^2+b^2}{(a+b)^2}$

Then , as $2ab \le a^2 + b^2$, Prob(same colour) \le Prob(different colours)

(ii)

	1	2	3
red	а	b	С
white	b	С	а
yellow	С	а	b

 $Prob(red/red') = \frac{ab(a+b)}{(a+b+c)^3}$

So Prob(exactly 2 reds) = $3 \cdot \frac{ab(a+b)}{(a+b+c)^3}$

and Prob(exactly 2 of the same colour)

$$= \frac{3}{(a+b+c)^3} \{ ab(a+b) + ac(a+c) + bc(b+c) \}$$

$$= \frac{3}{(a+b+c)^3} (a^2b + b^2c + c^2a + ab^2 + bc^2 + ca^2), \text{ as required}$$

$$Prob(all red) = \frac{abc}{(a+b+c)^3}$$

So Prob(all the same colour) = $3 \cdot \frac{abc}{(a+b+c)^3}$

fmng.uk

[Note that some parts of questions are not intended to be that difficult; they are just needed for a later part of the question.]

The last part follows if we can show that

 $a^{2}b + b^{2}c + c^{2}a + ab^{2} + bc^{2} + ca^{2} \ge 6abc$ (B)

[Clearly there is going to be some connection with the original inequality. (B) involves 3 letters and has cubic terms. We might investigate $(a + b + c)^2$ or $(a + b + c)^3$, but (apart from not leading anywhere), this is not really analogous to $(x - y)^2$, and we cannot introduce a minus sign (eg with $(a - b - c)^3$ without breaking the symmetry between the letters. This is one of those situations where we just have to look elsewhere, but at the same time keeping it simple.]

From the original inequality, $c(a^2 + b^2) \ge 2abc$ (C)

and so
$$c(a^2 + b^2) + b(a^2 + c^2) + a(b^2 + c^2) \ge 6abc$$

which gives (B), so that

Prob(exactly 2 of the same colour) \geq 6 Prob(all the same colour)

[(C) could perhaps be spotted by trying to create abc – as this is needed in (B)]