STEP 2009, Paper 1, Q12 - Solution (2 pages; 9/4/21)

[Inequalities and equations are often best rearranged into the form...≥ 0 etc.]

Consider $x^{2}+y^{2}-2 x y=(x-y)^{2}$
As (A) cannot be - ve, $x^{2}+y^{2}-2 x y \geq 0$ and hence $x^{2}+y^{2} \geq$ 2xy
[With 'show / prove that' questions, the proof has to be completely convincing.]
(i)

	1	2
red	a	b
blue	b	a

$\operatorname{Prob}($ same colour $)=\frac{a}{a+b} \times \frac{b}{a+b}+\frac{b}{a+b} \times \frac{a}{a+b}=\frac{2 a b}{(a+b)^{2}}$
$\operatorname{Prob}\left(\right.$ different colours) $=\frac{a}{a+b} \times \frac{a}{a+b}+\frac{b}{a+b} \times \frac{b}{a+b}=\frac{a^{2}+b^{2}}{(a+b)^{2}}$
Then , as $2 \mathrm{ab} \leq a^{2}+b^{2}$, Prob (same colour) $\leq \operatorname{Prob}$ (different colours)
(ii)

	1	2	3
red	a	b	c
white	b	c	a
yellow	c	a	b

$\operatorname{Prob}\left(\mathrm{red} / \mathrm{red} /\right.$ red $\left.^{\prime}\right)=\frac{a b(a+b)}{(a+b+c)^{3}}$
So Prob(exactly 2 reds $)=3 \cdot \frac{a b(a+b)}{(a+b+c)^{3}}$
and Prob(exactly 2 of the same colour)
$=\frac{3}{(a+b+c)^{3}}\{\mathrm{ab}(\mathrm{a}+\mathrm{b})+\mathrm{ac}(\mathrm{a}+\mathrm{c})+\mathrm{bc}(\mathrm{b}+\mathrm{c})\}$
$=\frac{3}{(a+b+c)^{3}}\left(a^{2} \mathrm{~b}+b^{2} \mathrm{c}+c^{2} \mathrm{a}+a b^{2}+\mathrm{b} c^{2}+\mathrm{c} a^{2}\right)$, as required
$\operatorname{Prob}($ all red $)=\frac{a b c}{(a+b+c)^{3}}$
So Prob(all the same colour) $=3 \cdot \frac{a b c}{(a+b+c)^{3}}$
[Note that some parts of questions are not intended to be that difficult; they are just needed for a later part of the question.]

The last part follows if we can show that

$$
a^{2} \mathrm{~b}+b^{2} \mathrm{c}+c^{2} \mathrm{a}+a b^{2}+\mathrm{b} c^{2}+\mathrm{c} a^{2} \geq 6 \mathrm{abc} \text { (B) }
$$

[Clearly there is going to be some connection with the original inequality. (B) involves 3 letters and has cubic terms. We might investigate $(a+b+c)^{2}$ or $(a+b+c)^{3}$, but (apart from not leading anywhere), this is not really analogous to $(x-y)^{2}$, and we cannot introduce a minus sign (eg with $(a-b-c)^{3}$ without breaking the symmetry between the letters. This is one of those situations where we just have to look elsewhere, but at the same time keeping it simple.]

From the original inequality, $\mathrm{c}\left(a^{2}+b^{2}\right) \geq 2 \mathrm{abc}$ (C)
and so $\mathrm{c}\left(a^{2}+b^{2}\right)+\mathrm{b}\left(a^{2}+c^{2}\right)+\mathrm{a}\left(b^{2}+c^{2}\right) \geq 6 \mathrm{abc}$
which gives (B), so that
Prob (exactly 2 of the same colour) $\geq 6 \operatorname{Prob}$ (all the same colour)
[(C) could perhaps be spotted by trying to create abc - as this is needed in (B)]

