STEP Examiners' Report 2009

Mathematics
STEP 9465, 9470, 9475

Contents
Step Mathematics $(9465,9470,9475)$
ReportSTEP Mathematics I
Page
3STEP Mathematics II
STEP Mathematics III13
Explanation of Results 21

STEP 2009 Paper I Principal Examiner's Report

There were significantly more candidates attempting this paper again this year (over 900 in total), and the scores were pleasing: fewer than 5% of candidates failed to get at least 20 marks, and the median mark was 48.

The pure questions were the most popular as usual; about two-thirds of candidates attempted each of the pure questions, with the exceptions of question 2 (attempted by about 90%) and question 5 (attempted by about one third). The mechanics questions were only marginally more popular than the probability and statistics questions this year; about one quarter of the candidates attempted each of the mechanics questions, while the statistics questions were attempted by about one fifth of the candidates.
A significant number of candidates ignored the advice on the front cover and attempted more than six questions. In general, those candidates who submitted answers to eight or more questions did fairly poorly; very few people who tackled nine or more questions gained more than 60 marks overall (as only the best six questions are taken for the final mark). This suggests that a skill lacking in many students attempting STEP is the ability to pick questions effectively. This is not required for A-levels, so must become an important part of STEP preparation.

Another "rubric"-type error was failing to follow the instructions in the question. In particular, when a question says "Hence", the candidate must make (significant) use of the preceding result(s) in their answer if they wish to gain any credit. In some questions (such as question 2), many candidates gained no marks for the final part (which was worth 10 marks) as they simply quoted an answer without using any of their earlier work.
There were a number of common errors which appeared across the whole paper. These included a noticeable weakness in algebraic manipulations, sometimes indicating a serious lack of understanding of the mathematics involved. As examples, one candidate tried to use the misremembered identity $\cos \beta=\sin \sqrt{1-\beta^{2}}$, while numerous candidates made deductions of the form "if $a^{2}+b^{2}=c^{2}$, then $a+b=c$ " at some point in their work. Fraction manipulations are also notorious in the school classroom; the effects of this weakness were felt here, too.

Another common problem was a lack of direction; writing a whole page of algebraic manipulations with no sense of purpose was unlikely to either reach the requested answer or gain the candidate any marks. It is a good idea when faced with a STEP question to ask oneself, "What is the point of this (part of the) question?" or "Why has this (part of the) question been asked?" Thinking about this can be a helpful guide.

One aspect of this is evidenced by pages of formulæ and equations with no explanation. It is very good practice to explain why you are doing the calculation you are, and to write sentences in English to achieve this. It also forces one to focus on the purpose of the calculations, and may help avoid some dead ends.

Finally, there is a tendency among some candidates when short of time to write what they would do at this point, rather than using the limited time to actually try doing it. Such comments gain no credit; marks are only awarded for making progress in a question.

STEP questions do require a greater facility with mathematics and algebraic manipulation than the A-level examinations, as well as a depth of understanding which goes beyond that expected in a typical sixth-form classroom. It is wise to heed the sage advice on the

STEP Mathematics website, http://www.admissionstests.cambridgeassessment.org. uk/adt/step:

From the point of view of admissions to a university mathematics course, STEP has three purposes. ... Thirdly, it tests motivation. It is important to prepare for STEP (by working through old papers, for example), which can require considerable dedication. Those who are not willing to make the effort are unlikely to thrive on a difficult mathematics course.

Question 1

The start of this question was attempted successfully by the majority of candidates, though a significant number failed to provide any justification of why $3^{2} \times 5^{3}$ has only 10 factors. Disturbingly, many candidates expanded $3^{2} \times 5^{3}=1125$ and then attempted to factorise the latter, rather than noticing that it is much easier to work from the already-factorised form. Few of these candidates made any further progress in the question.

Only about half of the candidates were able to make any significant progress on the second half of part (i); this required deducing a general formula for the number of factors. The idea was that by working through the specific example given at the beginning, it would be realised that every factor has the form $3^{a} \times 5^{b}$, and then a simple counting argument would do the job. There were numerous incorrect formulæ used at this point; candidates did not seem to understand that a formula cannot just be pulled from thin air, but requires some justification.

Of those candidates who reached a correct formula, several became stuck attempting to solve the equation $(m+1)(n+1)=12$; expanding the left hand side is likely to lead nowhere (especially in part (ii) of the question). The form $m n+m+n=11$ used by some candidates was particularly unhelpful, as it makes it very hard to justify that all solutions have been found. Furthermore, to answer this part successfully, some systematic approach is required, as we want the number of solutions to this equation. Several candidates slipped up at this point by failing to realise that 0 is, in fact, an integer, giving $m=0, n=11$ and vice versa as solutions.

Those candidates who understood part (i) generally made good progress on part (ii). However, a sizeable number of candidates failed to write down the most general form for N, often writing things likes $N=p^{m} \times q^{n}$ or $N=3^{m} \times 5^{n}$. Also, many failed to consider all possible factorisations of 428 . Furthermore, they needed to give some justification for the choice of primes and exponents corresponding to each factorisation of 428, and this was often lacking.
Nevertheless, there were some very good answers to this question, and those who understood the principles involved generally made very good progress.

Question 2

This was the most popular question on the paper by far, being attempted by about 90% of the candidates. It was also found to be one of the most straightforward questions; almost 60% of the attempts successfully completed the first two parts of the question, gaining 10 of the available 20 marks in the process, and about 20% of the attempts gained 15 marks or
above.
In the first part, most candidates understood the procedures required to find the tangent to a curve given implicitly, although some went to the effort of taking the cube root of the original equation. Disturbingly, a few of them could not do this correctly, and wrote $y=x+a+b$. A much more common and equally concerning error was to differentiate the equation and correctly deduce that $\mathrm{d} y / \mathrm{d} x=x^{2} / y^{2}$, and then use this as the gradient without substituting in the values of x and y at the point under consideration. The resulting purported equation for the tangent,

$$
y-b=\frac{x^{2}}{y^{2}}(x+a),
$$

is clearly not a linear equation. The candidates then rearranged it and figured out that some substitutions were necessary to reach the given answer, and fudged their way to it. It is always recommended that students go back through their answer to find the source of the error, rather than trying to fudge, as the latter is almost certainly going to get no credit.

For the second part of the question, most candidates realised that they needed to solve the two equations simultaneously (although there were some substitution errors encountered at this point). The process of substituting one equation into another and rearranging to reach the given cubic was done well, although there was a reasonable amount of fudging present here, too. Also, some candidates attempted to perform the substitutions while keeping the as and b s present in the equations; it is much simpler to substitute at the start, so that one only needs to work with two variables (x and y).
A sizeable number of candidates gave up at this point. This is unfortunate, as with the question saying "Hence", the obvious thing to do is to solve the cubic. Even without any idea of how to go beyond this, actually solving the cubic might have given a clue. Those who attempted this step were reasonably successful, primarily once they realised that $x=-1$ is a root of the cubic. Again, though, a number of candidates were let down by poor algebraic manipulation at this point.

Finally, having reached the two solutions of the cubic, many candidates floundered, assuming that $x=\frac{17}{7}$ could not possibly give them a solution. Unfortunately, $x=-1$ does not help, either. Those who did press ahead with $x=\frac{17}{7}$ often struggled to determine the corresponding value of y, frequently leading to some very long pieces of arithmetic as they attempted to calculate $x^{3}+a^{3}+b^{3}$ and then take the cube root, rather than using the tangent equation $4 y-x=9$. Often, the long arithmetical approaches failed to reach the correct answer because of a simple slip, which was a shame. A significant number of candidates did, however, manage to correctly reach the final conclusion.

As mentioned in the introduction, many candidates simply quoted a solution to this final equation (namely $6^{3}=5^{3}+4^{3}+3^{3}$), and this was given no credit, as the question had specifically said "Hence".

Question 3

This was found to be one of the hardest questions on the whole paper, with a median mark of 2 and a mean mark of 3.9. A relatively small number of candidates appreciated the subtleties involved and rest consequently produced fairly nonsensical answers.

For the first half of part (i), relatively few candidates successfully attempted to relate the two
given equations. It was encouraging that the majority of candidates were able to correctly quote the quadratic formula (especially as it is given in the formula book!), but there was considerable difficulty in evaluating it in this case. It seemed that candidates were also confused by the fact that the formula is given for the equation $a x^{2}+b x+c=0$, whereas here the constant term involves the variable a. Other candidates became confused about the distinction between negative roots and non-real (complex) roots; negative numbers are real! Of those who related the two equations, very few appreciated that the solutions of an equation involving a square root may be different from the corresponding squared equation. This was compounded by many students asserting that $1+4 a<0$ if and only if $a<0$ (where the "if and only if" may have been implied). Few understood that proving that there was no real solution when $a<0$ was insufficient to show that there was one real solution when $a>0$.

A small number of candidates proved this part of the question using an effective graphical method, which was very impressive.
Interestingly, the second half of part (i) proved to be more straightforward for a number of candidates, possibly because there were no square roots involved. However, some were confused and thought that the conditions on a in the first half of part (i) would be inherited in the second half.

Only a handful of students made any significant attempt at part (ii), and of those, some used algebraic methods following the ideas of part (i) while others used graph-sketching approaches, often quite successfully.

Question 4

This question was found to have a moderate level of difficulty. There were some very good attempts as well as some very poor ones.

The initial part of the question confused some candidates; the sketches produced showed that the statement: "The largest and smallest angles of the triangle are α and β, respectively" caused a surprising amount of difficulty. The use of "respectively", in particular, is standard mathematical language and should be recognised - a number of candidates swapped the two angles. (It might be that some genuinely thought that the angles were the other way round, but most simply probably misunderstood the question.) There were also a fair number of candidates who labelled the angle opposite p as either α or β, which prevented them from making much further progress in the question.
Most candidates were able to correctly use the cosine rule in the context of this question, which was very pleasing. Manipulating it to deduce the required equation was much harder, though: as usual, the lack of algebraic fluency was the sticking point. There were many careless errors, including sign errors, transcription errors and the like. Also, a number of candidates did not simplify the algebraic fractions when they could, thereby making their task even more challenging. Many demonstrated that they did not understand how to add fractions, and the monstrous messes which resulted were quite painful to see.

The straightforward method for approaching this question was to substitute expressions for $\cos \alpha$ and $\cos \beta$ into the left and right hand sides of the required equation and to show that they turned out to be equal. A significant number of candidates did not realise that this would be useful, and instead produced pages of algebra leading nowhere.

In the second part of the question, a number of candidates who had not succeeded in the first part nonetheless realised that they could use the given result to solve the second part, and some were successful at this.

There were some good attempts at the second part. The sticking points were once again mostly algebraic: some did not know the double angle formulæ or they used incorrect expressions for them; of those who did know them, many then erred in their expansion of the brackets. The next sticking point was solving the cubic; some did not attempt to do so, while others made algebraic slips. Those who did succeed in deducing $\cos \beta$ usually went on to correctly find the side lengths and hence the required ratio.

Question 5

This was the least popular of the pure questions, being attempted by barely one-third of the candidates. The marks followed suit; one third of the attempts scored 0 while another third scored 1: these were generally candidates who tried the question and then quickly gave up. Of those who got past the initial stages of the question, the significant majority gained full marks or very close to it.
The question essentially required only one idea, and was then a straightforward application of "connected rates of change" or the chain rule. The idea needed was that r, h and ℓ are related via Pythagoras, so that if A is fixed (i.e., it's a constant), then h can be expressed as a function of r.
Those students who realised that h is a function of r mostly got the whole question correct; those who regarded h as a constant got nowhere.

Question 6

This was found to be another hard question. While the integral in part (i) looks deceptively easy, many candidates had little idea how to approach it. Simplifying algebraic fractions via division is a standard A-level technique, and students should recognise that this is a useful approach when attempting to integrate rational functions. Others successfully used the substitution $u=x+1$ to simplify the integral.

One very common approach to part (i) was to use integration by parts. While this is often a useful technique, here it proves fruitless, and many candidates spent much effort without appearing to realise that they were not getting anywhere. Some thought they were making progress, but had actually misapplied the parts formula.
Other candidates tried manipulating the integral in completely incorrect ways, for example by trying to use the formula for the derivative of a quotient, or the derivative of a logarithm, or stating things like $\int f g \mathrm{~d} x=f \int g \mathrm{~d} x$.
About one third of attempts scored zero on this question, and fewer than one third of the attempts progressed beyond part (i). The main sticking point was part (ii), where few of the candidates realised that the substitution was $u=1 / x$. There were two major hints in the question itself: firstly that the limits were $1 / m$ to m, and these remained unchanged, and secondly that the $1 / x^{n}$ changed into u^{n-1}, which is about the same as u^{n}. Many candidates failed to spot this, and spent time trying other substitutions unsuccessfully. Even among
those who did realise what they needed to do, many seemed unsure how to handle the limits correctly when performing a substitution.

Some of part (iii) could be done even without successfully completing parts (i) and (ii). Very few candidates realised this, though, and did not even attempt part (iii) if they had got stuck earlier. Of those who did try part (iii), some used partial fractions instead of the earlier results (which was perfectly acceptable). Some of these were very successful, whereas others did not fully understand partial fractions. The most common error was writing

$$
\frac{1}{x^{3}(1+x)}=\frac{A}{x^{3}}+\frac{B}{1+x},
$$

which cannot possibly get the correct answer.
Other candidates applied the results of parts (i) and (ii) with varying degrees of success. A common error was being careless about the limits when trying to use the result of part (ii) in the integral in (iii)(b); the limits are not of the form $1 / m$ to m, and so more care is needed.

Question 7

Candidates found this question very approachable, and was one of the highest scoring questions on the paper. The standard integral at the start was generally well done, and about three-quarters of candidates gained full marks for it. Common mistakes included incorrect notation for integration by parts, forgetting to use the $[\cdots]_{0}^{2 \pi}$ notation when using parts with a definite integral, and of course making sign errors.
The trigonometrical identity in part (i) was done perfectly by most candidates who tried it. The following integral was usually performed successfully, and over half of all attempts got this far. The errors which occurred were similar to above, along with the standard inability to add and simplify fractions.

The integral in part (ii) caused significantly more problems. Most candidates wrote down the product formula for $\sin A \sin B$, but then many got stuck: they could not see how to proceed. It is very common in STEP questions for the later parts of a question to depend on the ideas developed earlier parts. In this case, we end up after expansion with two integrals like the one seen in part (i), but it seems as though this was not noticed.
The other common problem which occurred in this part was missing or losing the factor of $\frac{1}{2}$ in this part; this is another example of algebraic carelessness costing marks.

Question 8

The first part of this question was generally done very well, but the second half stumped most candidates. Most students confidently used the double angle formula for $\tan 2 \alpha$, and most realised that the line $y=\frac{4}{3} x$ is tangent to the circle because it is at an angle of 2α to the x-axis and passes through the origin. There were some candidates who misremembered or misapplied the double angle formula, or were unable to explain why the circle touches the line. In questions such as these, a good sketch is very helpful.

The second part of the question was done relatively poorly in comparison; fewer than a quarter of the candidates gained more than one mark for it. Even after drawing a good sketch,
many candidates showed little idea of how to proceed. They wrote pages of calculations with no direction, and so gained no credit. It is not worth performing calculations without a strategy; how will knowing the coordinates of the vertices, for example, help find the value of t ? (This was a very common calculation, perhaps because it is something the candidates are very comfortable with.) About half of the attempts noted that the two given lines were perpendicular, but then did not do anything useful with this fact.

Many students attempted to substitute the equation of the line $4 y+3 x=15$ into the equation of the circle to eliminate y, but then went on to eliminate t by asserting that $x=2 t$. This cannot succeed, as the point of tangency with $4 y+3 x=15$ clearly does not lie on the vertical line through the centre of the circle.

Some candidates, though, successfully used the ideas of part (i) to find the equation of the angle bisector of the x-axis and the side $A B$, and then found the value of t which had ($2 t, t$) lying on this bisector.

Another very common successful approach was to find the distance of the point $(2 t, t)$ from the line $4 y+3 x=15$ using the formula given in the formula book for the distance of a point from a line.

It is encouraging to see a significant number of candidates offering creative (and correct) solutions to a problem such as this.

Question 9

The start of this question was found to be fairly approachable. Most candidates were able to draw a correct sketch of the situation. However, a significant number became unstuck at this very early stage, getting the directions incorrect (for example, having Q at an angle of β above the horizontal) or swapping P and Q or worse.

The next challenge was to correctly apply the "suvat" equations (motion with constant acceleration) to this situation. This was done successfully for P by most candidates, although some made sign errors; it is vital to always indicate which direction is positive in problems such as these. The motion of Q, however, caused many problems: what is s when the motion does not start from the ground? Some candidates determined the displacement from the starting position and then tried adding or subtracting d, others introduced d later on, while others seemed to ignore d entirely. The general principle is to be clear about the meaning of one's symbols; being explicit whether s is the vertical displacement upwards or downwards from the ground or from D would have averted many of the problems.

Most candidates were able to show that $\cos \alpha=k \cos \beta$, but the quadratic proved too much for the majority of them. There were many attempts, but because of the earlier errors in calculating the displacements of the particles or mistakes in algebraic manipulations, the quadratic did not appear. Many did not realise that it was necessary to use the earlier result about the cosines, while others asserted that $\sin \alpha=k \sin \beta$.

About one-fifth of the attempts at the question reached the final part of the question. Of those, most were able to determine a formula for T, but many became stuck at this point. Once again, there were frequent attempts to rearrange formulæ, but few were successful.

Only a handful of candidates managed to progress beyond the requirement that $\sin ^{2} \alpha \leqslant 1$ to reach the desired conclusion.

Question 10

This was (marginally) the most popular of the mechanics questions, attempted by close to one third of the candidates. Those who attempted it generally gained reasonably good marks, and there were a few very pleasing answers.

In the first part, however, there was a clear lack of understanding among the candidates of the basic principles of mechanics. While they showed a good understanding of resolving forces, the once commonplace mantra of "Apply Newton's Second Law to each particle, then combine as needed" seemed to be all but forgotten: too few candidates indicated the tension in the string on their diagram. Many therefore treated the two particles as a single system which could be regarded as one particle with various forces, but offered no justification for this assertion. In this case, such an approach does work, but had the pulley not been smooth, it would not have done. Furthermore, applying Newton's Second Law at each particle is a much more straightforward, less error-prone approach, and may have saved a number of candidates from unfortunate sign errors.
Those who managed to write down a correct equation of motion were generally quite confident to show the required inequality. However, most fudged the argument, saying things like "the force on M is bigger than the force on m so $M g \sin \alpha>m g \cos \alpha$," which does not show an appreciation of the effect of tension.

The trigonometric manipulations required at the start of part (ii) were done fairly well, and those who got this far were very comfortable differentiating the expression using the quotient rule. However, having done so, very few were then able to perform the requisite manipulations on the derivative to reach the result that $\tan ^{3} \alpha=2$, and hence deduce the relationship between M and m.

It was also disappointing that of those good candidates who had reached this point, only three realised that they needed to justify that this was a (local) maximum; it should be standard for students to ascertain the nature of any stationary point they have found if they require the maximum or minimum of a function.

Question 11

This was found to be another very hard question, with most attempts being fragmentary; almost half of students gained 2 or less, though the handful who made it beyond half way achieved either 19 or 20 marks.

The first part of the question required correctly stating the laws of conservation of momentum and restitution, together with the formula for kinetic enery. Almost all candidates realised this and attempted to write down the appropriate formulæ. It was particularly disappointing, though, that so many candidates struggled to do even this correctly. Most were comfortable with the conservation of momentum, but having learnt the law of restitution in the form:

$$
e=\frac{\text { speed of separation }}{\text { speed of approach }}
$$

they were at a loss when all of the velocities were in the same direction, and consequently introduced various sign errors. A number of candidates remembered the formula upside-down (as speed of approach over speed of separation), and this was invariably fatal.

The next stumbling block was the formula for loss of kinetic energy. A sizeable minority of students wrote that the loss of KE in the first particle is $\frac{1}{2} m(u-p)^{2}$ instead of $\frac{1}{2} m u^{2}-\frac{1}{2} m p^{2}=$ $\frac{1}{2} m\left(u^{2}-p^{2}\right)$ and similarly for the second particle; this is a disturbing error, although it is not clear whether it arose because of a belief that $a^{2}-b^{2}=(a-b)^{2}$ or a lack of thought about what loss of KE means.

A number of students compounded their problems by confusing M and m, often due to careless handwriting. It is a cardinal principle of written mathematics that distinct symbols should look obviously distinct!

Those students who made one of these errors generally failed to make any significant further progress with the question.
The key step in part (i) was to manipulate the formula for loss of KE to eliminate M and q, making use of the other two equations to achieve this. Most candidates who had reached this point succeeded in doing this and reaching the required formula. Some made their lives more difficult by expanding every bracket fully; it is a valuable skill to recognise when this would be helpful and when not. For the final deduction in part (i), the instruction to "deduce" the result $u \geqslant p$ meant that no credit was given to those students who simply stated "it's obvious"; some justification on the basis of the formula for loss of KE was required.

The majority of candidates did not even attempt part (ii), which is a shame, as the ideas were essentially the same as in part (i), albeit with a little more sophistication: the task was to eliminate some of the variables. The first half required writing down the word statement in symbols and eliminating either M or M, while the second half required elimination of p and q followed by some rearrangement. Any attempt to perform these eliminations would have led to the correct results.

Question 12

This was the more popular of the probability questions, and was attempted by almost a quarter of the candidates. It gained the highest scores on the whole paper: the median mark was 14.

The introductory part caused some problems. This is a standard result which should have been recognised as such. Some candidates began with $(x+y)^{2}$ and became stuck. Others attempted to prove the result by induction, which will be challenging as x and y are any real numbers.

Part (i) was generally done extremely well, with many candidates drawing an appropriate tree diagram. However, some candidates failed to add the probabilities (more commonly when they had not drawn a tree diagram), asserting things such as $\mathrm{P}($ same colour $)=\frac{a b}{(a+b)^{2}}$ instead of $\frac{2 a b}{(a+b)^{2}}$.
Part (ii) caused more problems. Many candidates decided that it would be useful to expand $(a+b+c)^{3}$ and wasted a lot of time doing so. Another common issue was not adequately justifying the probability stated in the question; the arguments proposed for counting the number of possibilities were often weak or confused. Students would have done well to either draw a tree diagram (possibly abbreviated) or to explicitly list all of the possibilities. While taking time, it would have ensured that they reached the correct answer.

Most of the candidates were able to calculate the probabilty of all three being the same
colour correctly, although some left out the factor of 3 .
The last part of the question caused the most difficulty. Some suggested that since there were 18 ways of having exactly two the same colour and 3 ways of having them all the same colour, the former was 6 times more likely than the latter. This totally ignored the probabilities of these events and the work done earlier, as well as the "deduce" in the question. Others assumed $a \leqslant b \leqslant c$ and then wrote $a+x=b, a+y=c$ to try to relate it to the initial inequality, but struggled to get further. Nevertheless, there were a good number of students who correctly related the earlier inequality to the new context and succeeded in making the required deduction.

Question 13

This was a very unpopular question and most attempts were fragmentary, while a small number were essentially perfect. Most attempts were very weak at conveying their combinatorial ideas clearly, leading to confused and incorrect arguments. A few candidates completely misunderstood what was being asked and tried to answer something different entirely.
For part (i), very few candidates realised that the best way to begin part (i) was to regard the girls as a block dividing the boys into two sections. Even those who did spot this still struggled to deduce the required probability. Most of those who counted the total number of arrangements as $(n+3)$! and the number of arrangements of the girls as 3 ! failed to see that the girls could be positioned as a block in only $(n+1)$ positions.
For part (ii), most offerings were vain attempts to reach the given answer, but demonstrated no understanding of the problem.

STEP 2

General Remarks

Of the 1000+ entries for this paper, around 920 scripts actually arrived for marking, giving another slight increase in the take-up for this paper. Of this number, five candidates scored a maximum and seventy-five achieved a scoring total of 100 or more. At the other end of the scale, almost two hundred candidates failed to reach the 40 -mark mark. Otherwise, marks were spread reasonably normally across the mark range, though there were two peaks at about 45 and 65 in the distribution. It is comforting to find that the 'post-match analysis' bears out the view that I gained, quite firmly, during the marking process that there were several quantum states of markscoring ability amongst the candidature. Many (about one-fifth of the entry) struggled to find anything very much with which they were comfortable, and marks for these candidates were scored in 3 s and 4 s , with such folk often making eight or nine poor efforts at different questions without ever getting to grips with the content of any one of them. The next "ability band" saw those who either scored moderately well on a handful of questions or managed one really successful question plus a few bits-'n'-pieces in order to get up to a total in the mid-forties. To go much beyond that score required a little bit of extra talent that could lead them towards the next mark-hurdle in the mid-sixties. Thereafter, totals seemed to decline almost linearly on the distribution.

Once again, it is clear that candidates need to give the questions at least a couple of minutes’ worth of thought before commencing answering. Making attempts at more than the six scoring efforts permitted is a waste of valuable time, and the majority of those who do so are almost invariably the weaker brethren in the game. Many such candidates begin their efforts to individual questions promisingly, but get no more than half-a-dozen marks in before abandoning that question in favour of another - often with the replacement faring no better than its predecessor. In many such cases, the candidate's best-scoring question mark would come from their fifth, or sixth, or seventh, or ...?, question attempted, and this suggests either that they do not know where their strengths lie, or that they are just not taking the time to make any sensible decision as to which questions to attempt and in what order to do them, adopting some sort of hit-and-hope strategy. With the pleasing number of very high totals to be found, it is clear that there are many places in which good marks were available to those with the ability to first identify them and then to persevere long enough to be able to determine what was really going on therein.

It is extremely difficult to set papers in which each question is pitched at an equivalent level of difficulty. Apart from any other factors, candidates have widely differing strengths and weaknesses; one student's algebraic nuance can be the final nail in the coffin of many others, for instance. Moreover, it has seemed enormously clear to me - more particularly so since the arrival of modular A-levels - that there is absolutely no substitute for prolonged and determined practice at questions of substance. One moment's recognition of a technique at work can turn several hours of struggle into just a few seconds of polishing off, and a lack of experience is always painfully clear when marking work from candidates who are under-practised at either the art of prolonged mathematics or the science of creative problem-solving. At the other, more successful, end of the scale there were many candidates who managed to produce extraordinary amounts of outstanding work, racking up full-, or nearly full-, marks on question after question. With the marks distributed as they were, it seems that the paper was pitched appropriately at the intended level, and that it successfully managed to distinguish between the different ability-levels to be found among the candidates.

As in previous years, the pure maths questions provided the bulk of candidates' work, with relatively few efforts to be found at the applied ones. Moreover, many of these were clearly acts of desperation.

Comments on individual questions

Q1 The first question is usually intended to be a gentle introduction to the paper, and to allow all candidates to gain some marks without making great demands on either memory or technical skills. This year, however, and for the first time that I can recall in recent years, the obviously algebraic nature of the question was enough to deter half the candidates from attempting it. Indeed, apart from Q8, it was the least popular pure maths question. This was a great pity: the helpful structure really did guide folks in the right direction, and any half-decent candidates who did try it usually scored very highly on it. There were, nonetheless, a couple of stumbling-blocks along the way for the less wary, and many candidates tripped over them. The point at which most of the less successful students started to go astray was when asked to show that $A B C D$ is a rectangle. Lots of these folk elected to do so by working out distances ... when the use of gradients would have been much simpler. The really disappointing thing was that many simply showed both pairs of opposite sides to be equal in length without realising that this only proved the quadrilateral a parallelogram. The next major difficulty was to be found in the algebra, in turning the area, $2\left(\alpha^{2}-\beta^{2}\right)$, into something to do with u and v. It was quite apparent that many were unable to do so because they failed to appreciate that α and β were particular values of x and y that satisfy the two original curve equations, so that $\alpha^{4}+\beta^{4}=u$ and $\alpha \beta=v$. Then, squaring the area expression does the trick. Some got part of the way to grasping this idea, but approached from the direction of solving $x^{4}+y^{4}=u$ and $x y=v$ as simultaneous equations; the resulting surds-within-surds expressions for α and β were too indigestible for almost anyone to cope with.

Q2 Another of the less popular pure maths questions. It is clear that many A-level students are deeply suspicious of approximations and logarithms, and these plus the fact that y is a "function of a function of a function" clearly signalled to many to pass by on the other side. Of those who did take up the challenge here, almost all plumped automatically for differentiation in (i), usually by taking logs first and then differentiating implicitly. Just a few knew how to differentiate directly using the fact that $a^{x}=\mathrm{e}^{x \ln a}$. However, calculus was not actually required, since the maxima and minima of y can be deduced immediately from knowledge of the sine function. It then helped candidates enormously if they were able to work generally in deciding what values of x gave these stationary points, not least because they would need some care in figuring out which to use in (iv). It was a pleasant surprise to find that (ii) was generally handled quite well, but sketches were poor - usually as a result of previous shortcomings - especially for $x<0$; many candidates did realise, almost independently of previous working it seemed, that the right-hand 'half' of the curve oscillated increasingly tightly. In (iv), a lack of clarity regarding the x-values, allied to an uncertainty over dealing with the logs, proved a great hindrance to the majority. Also, it has to be said that, even amongst those with the right k 's to hand, a simple diagram of what they were attempting to work with would undoubtedly have saved them a lot of mark-spurning algebraic drivel.

Q3 Only marginally behind Q5 for popularity, this was a surprising hit amongst candidates. It had been anticipated that a trig. question containing lots of surds would be a bit of a turn-off, but this didn't prove to be the case. Moreover, it turned out to be the highest scoring question on the paper too. I had expressed reservations, during the setting process, that we had been a little too helpful in flagging up what was needed at each stage of the process, and so it proved to be. Most hiccups came at the outset, where proving even a simple identity such as this one was beyond many, even those who continued very successfully. The only other trouble-spot came in (ii) when lots of candidates (who should be applauded for trying to keep in the spirit of
"showing" stuff) undertook this part by rationalising the denominator (twice!) to prove the given result, while the sneakier types just multiplied across and verified it. Shame on them!
Q4 Considering the very poor marks gained on this question, it was surprisingly popular, with almost 600 "hits". Its essential difficulty lay in the fact that one can only go so far in this question before requiring the 'key of insight' in order to progress further. And that was that, as they say. Personally, this was my favourite question, as the key is such a simple one once it is pointed out to you (clearly not an option in the exam., of course). Parts (i) and (ii) require candidates to find $\mathrm{p}(1)=1$ and to show that $\mathrm{p}^{\prime}(x)$ has $(x-1)^{4}$ as a factor, and most did so perfectly satisfactorily. The (strikingly similar) information then given in (iii) should then suggest (surely?), to anyone with any sort of nous, that they are required to make similar further deductions. Nope - apparently not. Even amongst the few who did then find $p(-1)=-1$ and show that $\mathrm{p}^{\prime}(x)$ has $(x+1)^{4}$ as a factor, very few knew what to do with these facts. I think that this is principally because most students work "on automatic" in examinations - a by-product of the much (and rightly) criticised modular system - simply doing as they are told at each little step of the way without ever having to stand back, even momentarily, and take stock of the situation before planning their own way forwards. This is the principal shame with modular assessment: the system prevents the very able from ever having to prove their ability whilst simultaneously persuading the only modestly able that they are fantastic mathematicians when they aren't. A moment of thoughtful reflection on the nature of this strange creature that is $\mathrm{p}(x)$ and what we now know about it reveals all. It is a polynomial of degree 9. Its derivative must therefore be a polynomial of degree 8 . And we know that $\mathrm{p}^{\prime}(x)$ has two completely distinct factors of degree 4. Apart from the tendency to assume that a polynomial always commences with a coefficient of 1 , the rest (in principle) is just a matter of adding two 4 s to get 8 .

Q5 This was the most popular question on the paper, though only by a small margin, and the second highest scoring. In fact, I can be very specific and state that almost all of the really successful attempts scored 15 or 16 marks. The few marks lost were almost invariably in (ii), where so very, very few picked up the hints as to the only, minor difficulty within the question. Once again, this is almost certainly due to the mind-set of simply ploughing on regardless without stopping to think about what is actually going on. Whilst understanding that nearly all candidates will feel under considerable pressure to pick up as many marks as possible as quickly as possible, NO-ONE who sits this paper should be of the view that they are not going to be challenged to think. And, to be fair to the setting panel, we did put some fairly obvious signposts up for those who might take the trouble to look for such things. For future STEP candidates, this will make an excellent practice question for teachers to put their way. (If they are willing to learn from their mistakes, and you think you can catch them out ... this is a marvellous question to use.) One pointer is in the change of limits, from $(5,10)$ to $\left(\frac{5}{4}, 10\right)$; the other is in the switch from asking for integrals-to-be-evaluated to asking for areas. The crux of the matter is that most Alevel students believe that $\sqrt{x^{2}}=x$ rather than $|x|$. Once you realise that, the question is fiddly but otherwise rather easy.

Q6 This was another very popular question, but the one with the lowest mean mark score of all the pure questions, at about 7. I think that the initial enthusiasm of seeing something familiar in the Fibonacci Numbers was more than countered by the inequalities work that formed the bulk of the question. Nonetheless, I suspect that, if given the opportunity to talk it through after the event, many candidates would admit that half of the marks on the question are actually ludicrously easy to acquire and that they were really only put-off by appearances. For instance, to show that $S>$ any suitable lower-bound, one need only keep adding terms until the appropriate figure is exceeded. For those reciprocals of integers that are not easily calculated, such as $\frac{1}{13}$, it is perfectly reasonable to note something that they are greater than and us that in its place. Thus,

$$
S=1+1+\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{8}+\ldots>1+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{5}+\frac{1}{10}+\ldots=2+0.5+0.25+0.2+0.1=3.05>3
$$

works pretty easily (though it may not have scored full marks in (i) as a particular approach was requested), and something similar could be made to work in showing that $S>3.2$ in (ii). The approach that the question was designed to direct candidates towards was that of stopping the direct calculation at some suitable stage, and using an inequality of the form $\frac{1}{F_{i}}<\frac{1}{2}\left(\frac{1}{F_{i-2}}\right)$, possibly alternating with the odd- and even-numbered terms, to make the remaining sum less than a summable infinite GP. For further thoughts and possible developments of these ideas, I would refer the reader to the Hints \& Solutions document for this paper.

Q7 In many ways, this question is little more than an academic exercise, since I can see no way in which these integrals would actually arise in any practical situation. I apologise for this. However, it was a good test of candidates’ ability to stretch a general result in different directions, probing them for increasing amounts of insight and perseverance. For future STEPtakers, the opening result is a good one for which to find a generalisation, and it is a possibly fruitful avenue to explore the "product rule of differentiation" for three terms (etc.), say $y=p q r$ in this case. Such an approach might have helped to prevent some of the ghastly mix-ups in writing all the terms out that were to be found in the scripts. It was disappointing to see that so few candidates seemed to think that they should tidy up the answer and demonstrate that the leftover bits did indeed form a cubic polynomial, as required by the question. In the end, we gave anyone the mark who simply observed that what was left was a cubic (if indeed that was the case in their working). Thereafter, (i) is a straightforward application of the result, requiring candidates only to identify the values of n, a and b. However, even here, it was rare to see folks justifying the form of the cubic, which might have acted as a check for errors. In (ii), the polynomial term is no longer cubic, so candidates were expected to try to see if an extra factor of ($x-1$) could be taken out to go with the other twenty-one $(x-1) \mathrm{s}$, which indeed it could. Checking the cubic's terms was rather more important here. The final integral, in (iii), was difficult, and this was where candidates were 'found out' on this question. The obvious thing is to try and extract some $(x-2)$ factor(s) from the quartic polynomial, but this doesn't work. Candidates may reflect that they shouldn't have found this too much of a surprise, as that would simply have been repeating the "trick" of (ii). Though only a small minority realised it, the next most obvious possibility to try, having already found in (ii) that 'the next case up' gives a quartic rather than a cubic polynomial, is to try some combination of the obvious answer and the next one up, and this turns out to be exactly what is required.

Q8 The vectors question was the least popular pure maths question by a considerable way, and only marginally more popular than most of the applied questions. In general, attempts were short-lived and candidates usually gave up when the algebra got a bit "iffy". Strangely, an awful lot of attempts began very poorly indeed; the ranges of values of λ and μ had a geometric significance relating to where P and Q lay on the lines $A B$ and $A C$, and these were not well grasped. Moreover, it was surprising to see diagrams in which the lines had not even been drawn, often leaving the marker to guess whether the points were supposed to be on them or not. Many responses to the next part were so bizarre that they were almost funny: a lot of candidates thought that $C Q$ etc. were vectors rather than lengths, and the " \times " was treated variously as a scalar multiplication, the scalar product and the vector product. Oddly enough, they could all lead to the required answer, $\lambda \mu=1$, even legitimately (with a bit of care) though we were harsh on statements that were actually nonsense. Very few made it to the later stages of the question.

Q9 Of the applied maths questions, this was (again) by far the most popular, drawing around 300 attempts. It also proved to be one of the highest-scoring of all the questions on the paper, with a mean score of 12 . Finding the position of the centre of mass was sensibly used by most
candidates, and the first two parts yielded high marks. The last part attracted less confident algebra, which is curious given that it involved much the same sort of work.

Q10 In general, one can be forgiven for approaching a collisions question in an automatic way; applying the Conservation of Linear Momentum (CLM) and Newton's Experimental Law of Restitution (NEL or NLR) for both initial collisions. Most candidates did the routine stuff quite well but then got bogged down in the ensuing algebra. The nice thing about this question is that it can also be done without the need for the use of CLM at all. The NEL statements give a relationship between the final velocities (v_{1} to v_{4}, say) of the four particles, and then equating for the times to the following collisions at O uses these velocities without ever requiring to have them in terms of u. I was greatly surprised to see such a high proportion of the attempts using some such suitably concise approach, and they were almost guaranteed full marks on the question, and for very little time and trouble.

Q11 This question was the least popular question on the paper, and those trying it averaged only 6 marks on it. The most surprising aspect of it is that so few could even write a decent $N 2 L$ statement to begin with, and they simply stood no chance thereafter. For those who made it to the first-order, variables-separable differential equation, the work was much more promising, though I suspect this is due to the fact that only the very able made it this far. The unpromising integration of $\mathrm{f}(v) \mathrm{d} v$, where the $\mathrm{f}(v)$ turned out to be a linear-over-linear algebraic fraction, was certainly unappealing to look at, but a simple substitution such as $s=P-(n+1) R v$ reduces it to a very simple piece of integration. As far as I recall it, most of the inequalities in (i) were fudged, though it was very heart-warming indeed to see those excellent few who made it right to the end. It is a pity that a last minute change to the question, prior to printing, which had been intended to help candidates by giving them the final answer, then omitted the factor ($n+1$) in its denominator. Fortunately, we are talking about no more than twenty of the most able (and highscoring) candidates here; those who had explained it correctly, but then crossed-out the ($n+1$) since it didn't appear on the question-paper, were given the final mark. As for those who were slightly less honest and gave the proper explanation but (presumably deliberately) didn't write the missing factor in anywhere, in order to fudge it, we were mean and didn't give them the final mark.

Q12 There were only around 200 attempts to Q12, and the mean score was just 5, making it the worst question on the paper for marks. Many of the attempts failed to get very far at all, largely for finding that efforts to integrate $\mathrm{e}^{a x^{2}}$ proved difficult. Personally, I had thought it was giving too much away to ask for the sketch of the pdf at the beginning, in that it might just give the game away that what was being handled here was just half of a normal distribution. I worried in vain. Sadly, without this crucial observation, little or no progress was possible. Even with it, a little care was still needed in handling the differences between this and $N(0,1)$, for which the tables could be used.

Q13 This question was only marginally more popular than Q11, but those who did attempt it were usually well rewarded with marks; candidates averaging almost 11 on it. The careful use of binomial expansions, and remembering to use the result $q=1-p$ throughout, made this an eminently approachable question in principle. Those who stumbled did so over little arithmetical slips, such as with the careless handling of minus signs. Once an error has been introduced, although method marks are there to be had, the final satisfaction of getting to the answer is never to be experienced without going back to correct it.

The vast majority of candidates (in excess of 95\%) attempted at least five questions, and nearly a quarter attempted more than six questions, though very few doing so achieved high scores (about 2\%). Most attempting more than six questions were submitting fragmentary answers, which, as the rubric informed candidates, earned little credit.

Section A: Pure Mathematics

1. A popular question attempted by more than four fifths of the candidates, and scoring as well as any question, and most successfully obtained expressions for p and q. Quite a lot also obtained the quadratic equation and from it the sum and product of roots for s and t. However, a common error at this stage was to overlook the coefficient of the second degree term not being 1. For this reason, or otherwise, because they didn't know what to do many "fell at the last hurdle", although a good number completed the question successfully.
2. This was similar to question 1 in popularity and success. Virtually all got part (i) correct, and many used the series correctly to obtain the value for a_{1}. Quite a few completed the question, although frequently candidates dropped 2 marks through not looking at terms properly.
3. Though slightly more popular than the first 2 questions, the attempts scored marginally less well. Candidates began well, though the limit of f ' (t) was not well done. The even function in (ii) was usually correctly justified. Part (iii) was frequently not quite correctly justified, though some did so by sketching $y=\boldsymbol{q}^{\boldsymbol{- 2}}$ and $y=1-t$. The sketch of $\mathrm{f}(\mathrm{t})$ often had the wrong gradient as it approached the y axis, and asymptotes were frequently not identified.
4. About half the candidates attempted this, with similar levels of success to question 3. Parts (i) and (iii) caused few problems though part (ii) did. There were some errors in part (iv), but it was the last part using the four results that usually went wrong.
5. This was the most popular question, with a few more attempts than question 3, but with a level of success matching the first two questions. Many showed the first two results correctly, and quite a few the third one. The last part tripped up many candidates, though the most successful used the first approach in the mark scheme. A number of candidates understood "independent of n " in the question to be given information, and attempted to find a, b, and c by solving three simultaneous equations for specific values of n. However, there were commonly errors in the values of the S_{n} used. An efficient alternative solution is given in the mark scheme.
6. About a third of the candidates attempted this, though with less success than any of its predecessors. Attempts were mostly "all or nothing". Some candidates thought that the cyclic quadrilateral property had to be that opposite angles are supplementary, as the only property that they knew.
7. Approximately two thirds of the candidates attempted this, earning roughly half marks in doing so. Part (i) and finding the three expressions for $\mathrm{P}_{0}, \mathrm{P}_{1} \& \mathrm{P}_{2}$ from part (ii) largely went well. The result involving $\mathrm{P}_{\mathrm{n}+1}$ saw most falling by the wayside, especially those who attempted it by induction. Quite a few candidates did score all but two marks in proving that P_{n} was a polynomial of degree n or less, but not appreciating that there was still something to do regarding the leading term.
8. Roughly the same number attempted this as question 7, with slightly less success. Usually, a candidate did not properly obtain the first three results, and so would end up having apparently finished the whole question but in fact scoring only two thirds marks. The problem was often that the limiting process was not fully understood. In part (ii), there was often odd splitting going on to attempt the integration by parts and this part often went wrong.

Section B: Mechanics

9. The most popular of the three Mechanics questions, being attempted by a sixth of the candidates, it was also the least successful, scoring only a quarter of the marks. Quite a few candidates scored nothing at all, and quite a few got the result in part (i) correctly, although by a variety of approaches, given that the uniform acceleration equations can be combined in numerous ways. However, few made any headway with the trajectory equation for part (ii).
10. The second least popular question on the paper attempted by a twelfth of the entry, the success rate on it was comparable to questions 7 and 8 . Mostly, candidates successfully found and solved the differential equation, but finding T stumped them, with a alternative approaches successfully used in a very small number of cases.
11. A little less popular than question 9, the success rate was between those of the other questions in this section. Candidates tended to polarize scoring less than a third of, or very nearly all if not all of the marks. Conservation of energy, uniform acceleration and even constant speed were erroneous methods attempted. Even some good candidates carried out the integration in part (i), and then failed to solve the quadratic equation for x.

Section C: Probability and Statistics

12. About a tenth of the candidates attempted this, usually earning quarter marks. Quite often the conditional bit in part (i) threw them, so they were 3 marks down before they got into the question. 80% of the attempts did not obtain or use the pgf as required. A small number of candidates really knew their stuff and did it very well.
13. A handful of candidates attempted this question with a couple making a good stab at part (i), but otherwise it was the odd crumb, if even that, which was collected.

Explanation of Results STEP 2009

All STEP questions are marked out of 20. The mark scheme for each question is designed to reward candidates who make good progress towards a solution. A candidate reaching the correct answer will receive full marks, regardless of the method used to answer the question.

All the questions that are attempted by a student will be marked. However, only the 6 best answers will be used in the calculation of the final grade for the paper.

There are five grades for STEP Mathematics which are
S - Outstanding
1 - Very Good
2 - Good
3 - Satisfactory
U - Unclassified
Usually a candidate who answers 4 questions well (not perfectly) will be awarded a grade 1 for that paper.
The rest of this document presents, for each paper, the grade boundaries (minimum scores required to achieve each grade), cumulative percentage of candidate achieving each grade, and a graph showing the score distribution (percentage of candidates on each mark).

STEP Mathematics I (9465)

Grade boundaries

Maximum Mark	S	1	2	3	U
120	95	72	58	35	0

Cumulative percentage achieving each grade

Maximum Mark	S	1	2	3	U
120	5.0	17.4	32.4	78.1	100.0

Distribution of scores

STEP Mathematics II (9470)
Grade boundaries

Maximum Mark	S	1	2	3	U
120	98	71	61	39	0

Cumulative percentage achieving each grade

Maximum Mark	S	1	2	3	U
120	9.1	29.6	47.3	80.9	100

Distribution of scores

STEP Mathematics III (9475)

Grade boundaries

Maximum Mark	S	1	2	3	U
120	95	67	55	38	0

Cumulative percentage achieving each grade

Maximum Mark	S	1	2	3	U
120	14.2	45.8	62.9	89.2	100

Distribution of scores

