STEP 2008, Paper 3, Q2 - Solution (2 pages; 14/4/21)

(i)
$$1^{st}$$
 part
Consider $\sum_{r=0}^{n} [(r+1)^{k} - r^{k}] = (n+1)^{k}$
LHS $= \sum_{r=0}^{n} [1 + kr + {k \choose 2} r^{2} + \dots + {k \choose k-1} r^{k-1}$
 $= (n+1) + kS_{1}(n) + {k \choose 2} S_{2}(n) + \dots + {k \choose k-1} S_{k-1}(n)$
 $= (n+1) + {k \choose k-1} S_{1}(n) + {k \choose k-2} S_{2}(n)$
 $+ \dots + {k \choose 3} S_{k-3}(n) + {k \choose 2} S_{k-2}(n) + kS_{k-1}(n)$, so that
 $kS_{k-1}(n) = (n+1)^{k} - (n+1) - {k \choose 2} S_{k-2}(n) - {k \choose 3} S_{k-3}(n)$
 $- \dots - {k \choose k-1} S_{1}(n)$, as required.

2nd part

When
$$k = 4$$
 this gives
 $4S_3(n) = (n + 1)^4 - (n + 1) - 6S_2(n) - 4S_1(n)$, so that
 $S_3(n) = \frac{1}{4}\{(n + 1)^4 - (n + 1) - n(n + 1)(2n + 1) - 2n(n + 1)\}$
 $= \frac{1}{4}(n + 1)\{(n^3 + 3n^2 + 3n + 1) - 1 - (2n^2 + n) - 2n\}$
 $= \frac{1}{4}(n + 1)(n^3 + n^2)$
 $= \frac{1}{4}n^2(n + 1)^2$

3rd part

When k = 5 (*) gives $5S_4(n) = (n+1)^5 - (n+1) - 10S_3(n) - 10S_2(n) - 5S_1(n)$,

fmng.uk

so that
$$S_4(n) = \frac{1}{5} \{(n+1)^5 - (n+1) - \frac{5}{2}n^2(n+1)^2$$

 $-\frac{5}{3}n(n+1)(2n+1) - \frac{5}{2}n(n+1)\}$
 $= \frac{(n+1)}{30} \{6(n+1)^4 - 6 - 15n^2(n+1) - 10n(2n+1) - 15n\}$ (A)
Now, $(n+1)^4 - 1 = [(n+1)^2 + 1][(n+1)^2 - 1]$
 $= [(n+1)^2 + 1] \cdot n(n+2),$
so that (A) $= \frac{n(n+1)}{30} \{6(n^2 + 2n + 2)(n+2) - 15n(n+1) - 10(2n+1) - 15\}$
 $= \frac{n(n+1)}{30} \{6n^3 + n^2(12 + 12 - 15) + n(24 + 12 - 15 - 20) + (24 - 10 - 15)\}$
 $= \frac{n(n+1)}{30} \{6n^3 + 9n^2 + n - 1\}$
This can be simplified to $\frac{1}{2}n(n+1)(2n+1)(2n^2 + 2n - 1)$

This can be simplified to $\frac{1}{30}n(n+1)(2n+1)(3n^2+3n-1)$

[though it would be time-consuming to consider all possible factors of the form an + 1 (where *a* might be negative)]

(ii) 1st part

From (*) it can be seen that if $S_{k-2}(n)$ is of order k - 1, then (due to the term $(n + 1)^k$) $S_{k-1}(n)$ will be of order k. As $S_1(n)$ is of order 2, it follows by induction that $S_k(n)$ is of order k + 1, for all $k \ge 1$.

2nd part

The constant term is $S_k(0) = \sum_{r=0}^0 r^k = 0$

3rd part

The sum of the coefficients is $S_k(1) = \sum_{r=0}^{1} r^k = 1$