STEP 2008, Paper 1, Q6 - Solution (4 pages; 26/4/21)

1st part

The graph of $y=\frac{e^{x}-1}{e-1}$ can be obtained from the graph of $y=e^{x}$ by a translation of $\binom{0}{-1}$, followed by a stretch in the y direction of scale factor $\frac{1}{e-1}$ (which is less than 1).

To investigate the slope of the curve, relative to $y=x$:
$f(x)=\frac{e^{x}-1}{e-1} \Rightarrow f^{\prime}(x)=\frac{e^{x}}{e-1}$, and $f^{\prime}(0)=\frac{1}{e-1}<1$
Limiting the domain to $x \geq 0$ then gives $y=f(x)$, and $y=g(x)$ is the reflection of $y=f(x)$ in the line $y=x$.

2nd part

Let $I_{1}=\int_{0}^{\frac{1}{2}} \frac{e^{x}-1}{e-1} d x=\frac{1}{e-1}\left[e^{x}-x\right]_{0}^{\frac{1}{2}}$
$=\frac{1}{e-1}\left(e^{\frac{1}{2}}-\frac{1}{2}\right)-\frac{1}{e-1}(1)=\frac{e^{\frac{1}{2}-\frac{3}{2}}}{e-1}$
Now $y=\frac{e^{x}-1}{e-1} \Rightarrow(e-1) y=e^{x}-1$
$\Rightarrow x=\ln \{(e-1) y+1\}$, and so $g(x)=\ln \{(e-1) x+1\}$
Let $I_{2}=\int_{0}^{k} \ln \{(e-1) x+1\} d x$
$=[$ by Parts $]\left[x \ln \{(e-1) x+1\}_{0}^{k}\right]-\int_{0}^{k} \frac{x(e-1)}{(e-1) x+1} d x$
$=(k \ln \{(e-1) k+1\}-0)-\int_{0}^{k} 1-\frac{1}{(e-1) x+1} d x$
$=\frac{1}{\sqrt{e}+1} \ln \{(\sqrt{e}-1)+1\}-\left[x-\ln \{(e-1) x+1\} \cdot \frac{1}{e-1}\right]_{0}^{k}$
$=\frac{1}{\sqrt{e}+1} \cdot \frac{1}{2}-\left(k-\ln \{(e-1) k+1\} \cdot \frac{1}{e-1}\right)+(0)$
$=\frac{1}{2(\sqrt{e}+1)}-\frac{1}{(\sqrt{e}+1)}+\frac{1}{2(e-1)}$
$=-\frac{1}{2(\sqrt{e}+1)}+\frac{1}{2(e-1)}$
And then $I_{1}+I_{2}=\frac{e^{\frac{1}{2}}-\frac{3}{2}}{e-1}-\frac{1}{2(\sqrt{e}+1)}+\frac{1}{2(e-1)}$
$=\frac{1}{2(e-1)}\left\{2 e^{\frac{1}{2}}-3-(\sqrt{e}-1)+1\right\}$
$=\frac{1}{2(e-1)}(\sqrt{e}-1)=\frac{1}{2(\sqrt{e}+1)}$, as required.

3rd part

Note now that $f\left(\frac{1}{2}\right)=\frac{\sqrt{e}-1}{e-1}=\frac{1}{\sqrt{e}+1}=k$
and, as g is the inverse of $f, g(k)=\frac{1}{2}$
Also, $k=\frac{1}{\sqrt{e}+1}<\frac{1}{1+1}=\frac{1}{2}$
I_{1} and I_{2} are the shaded areas in the diagrams below [as $k<\frac{1}{2}$, the rectangle shown in the left-hand diagram appears to the left of the intersection of $f \& g$, where $f(x)<x]$, and by the symmetry between f and $g(g(x)$ bears the same relation to the y-axis as $f(x)$ does to the x-axis),
$I_{2}=$ area of rectangle with base $\frac{1}{2}$ and height k (in the left-hand diagram) $-I_{1}$,
and so $I_{1}+I_{2}=\frac{1}{2} k=\frac{1}{2(\sqrt{e}+1)}$, as required.

