STEP 2008, Paper 1, Q6 - Solution (4 pages; 26/4/21)

1st part

The graph of $y = \frac{e^{x}-1}{e^{-1}}$ can be obtained from the graph of $y = e^{x}$ by a translation of $\begin{pmatrix} 0\\-1 \end{pmatrix}$, followed by a stretch in the *y* direction of scale factor $\frac{1}{e^{-1}}$ (which is less than 1).

To investigate the slope of the curve, relative to y = x:

$$f(x) = \frac{e^{x}-1}{e-1} \Rightarrow f'(x) = \frac{e^{x}}{e-1}$$
, and $f'(0) = \frac{1}{e-1} < 1$

Limiting the domain to $x \ge 0$ then gives y = f(x), and y = g(x) is the reflection of y = f(x) in the line y = x.

fmng.uk

2nd part

Let
$$I_1 = \int_0^{\frac{1}{2}} \frac{e^{x-1}}{e^{-1}} dx = \frac{1}{e^{-1}} [e^x - x]_0^{\frac{1}{2}}$$

 $= \frac{1}{e^{-1}} \left(e^{\frac{1}{2}} - \frac{1}{2} \right) - \frac{1}{e^{-1}} (1) = \frac{e^{\frac{1}{2}} - \frac{3}{2}}{e^{-1}}$
Now $y = \frac{e^{x-1}}{e^{-1}} \Rightarrow (e-1)y = e^x - 1$
 $\Rightarrow x = \ln \{(e-1)y+1\}$, and so $g(x) = \ln \{(e-1)x+1\}$
Let $I_2 = \int_0^k \ln\{(e-1)x+1\} dx$
 $= [by Parts] \left[x \ln\{(e-1)x+1\}_0^k \right] - \int_0^k \frac{x(e^{-1})}{(e^{-1})x+1} dx$
 $= (kln\{(e-1)k+1\} - 0) - \int_0^k 1 - \frac{1}{(e^{-1})x+1} dx$
 $= \frac{1}{\sqrt{e+1}} ln\{(\sqrt{e}-1)+1\} - [x - ln\{(e-1)x+1\} \cdot \frac{1}{e^{-1}}]_0^k$
 $= \frac{1}{\sqrt{e+1}} \cdot \frac{1}{2} - (k - ln\{(e-1)k+1\} \cdot \frac{1}{e^{-1}}) + (0)$
 $= \frac{1}{2(\sqrt{e+1})} - \frac{1}{(\sqrt{e+1})} + \frac{1}{2(e^{-1})}$

$$= -\frac{1}{2(\sqrt{e}+1)} + \frac{1}{2(e-1)}$$

And then $I_1 + I_2 = \frac{e^{\frac{1}{2}} - \frac{3}{2}}{e^{-1}} - \frac{1}{2(\sqrt{e}+1)} + \frac{1}{2(e-1)}$

$$= \frac{1}{2(e-1)} \{ 2e^{\frac{1}{2}} - 3 - (\sqrt{e} - 1) + 1 \}$$
$$= \frac{1}{2(e-1)} (\sqrt{e} - 1) = \frac{1}{2(\sqrt{e} + 1)}, \text{ as required.}$$

3rd part

Note now that $f\left(\frac{1}{2}\right) = \frac{\sqrt{e}-1}{e-1} = \frac{1}{\sqrt{e}+1} = k$

and, as g is the inverse of f, $g(k) = \frac{1}{2}$

Also, $k = \frac{1}{\sqrt{e}+1} < \frac{1}{1+1} = \frac{1}{2}$

 I_1 and I_2 are the shaded areas in the diagrams below [as $k < \frac{1}{2}$, the rectangle shown in the left-hand diagram appears to the left of the intersection of f & g, where f(x) < x], and by the symmetry between f and g (g(x) bears the same relation to the y-axis as f(x) does to the x-axis),

 I_2 = area of rectangle with base $\frac{1}{2}$ and height k (in the left-hand diagram) $-I_1$,

and so $I_1 + I_2 = \frac{1}{2}k = \frac{1}{2(\sqrt{e}+1)}$, as required.

S= F(m)

yegen)

32

