STEP 2008, Paper 1, Q1 (3 pages, 13/2/24)

$1^{\text {st }}$ Part

x is irrational if it cannot be written in the form $\frac{p}{q}$, where $p \& q \in$ $\mathbb{Z}(q \neq 0)$

2nd Part

A: Suppose that both of p and q are rational.
Then $p q=\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$, where $a, b, c \& d \in \mathbb{Z}$, contradicting the fact that $p q$ is irrational. Hence at least one of p and q is irrational.

B: Similarly, if both of p and q are rational, then $p+q=\frac{a}{b}+\frac{c}{d}=$ $\frac{a d+b c}{b d}$, contradicting the fact that $p+q$ is irrational. Hence at least one of p and q is irrational.

3rd Part

C: Let $p=\pi \& q=-\pi$. Then $p+q=0$, which is rational.

$4^{\text {th }}$ Part

To show that no pair exists for which both numbers are rational:
Case (i) Suppose that $p=\pi+e \& q=\pi-e$ are both rational.
Then $p+q=2 \pi$, which is irrational, since if it were rational, $2 \pi=\frac{a}{b}$ and $\pi=\frac{a}{2 b}$, contradicting the fact that π is irrational.
[It might be a bit over-the-top to prove that 2π is irrational, but the nature of the question suggests that it could be required. In fact the official solutions don't bother with this.]

But B then implies that at least one of $p \& q$ is irrational, contradicting our supposition.

Case (ii) Suppose that $p=\pi+e \& q=\pi^{2}-e^{2}$ are both rational. Then $\frac{q}{p}$ is rational [hopefully this doesn't need to be proved], and thus
$\frac{\pi^{2}-e^{2}}{\pi+e}=\pi-e$ is rational. But this gives case (i), which leads to a contradiction.

Case (iii) Suppose that $p=\pi+e \& q=\pi^{2}+e^{2}$ are both rational. Then
$p^{2}-q=2 \pi e$, and hence πe must be rational, contradicting the fact that $e \pi$ is irrational.

Case (iv) Suppose that $p=\pi-e \& q=\pi^{2}-e^{2}$ are both rational. Then
$\frac{q}{p}$ is rational, and hence $\frac{\pi^{2}-e^{2}}{\pi-e}=\pi+e$ is rational. But this gives case (i), which leads to a contradiction.

Case (v) Suppose that $p=\pi-e \& q=\pi^{2}+e^{2}$ are both rational. Then
$q-p^{2}=2 \pi e$, and hence πe must be rational, contradicting the fact that $e \pi$ is irrational.

Case (vi) Suppose that $p=\pi^{2}-e^{2} \& q=\pi^{2}+e^{2}$ are both rational. Then $p+q=2 \pi^{2}$, which is irrational (since π^{2} is assumed to be irrational). But B then implies that at least one of $p \& q$ is irrational, contradicting our supposition.

Thus two pairs of rational numbers cannot be found amongst the 4 given numbers, so that at most one of them is rational.
[A slight cause for concern here is that we have not made use of the given facts that $e \& e^{2}$ are irrational. The official sol'ns use the same method though.]

