STEP 2007, P1, Q13 - Solution (7 pages; 18/3/24)
[This question illustrates 3 possible approaches:
(a) "one step at a time", whereby we imagine the actual sequence of events (considering which disc is taken $1^{\text {st, }}$, then 2 nd \ldots..)
(b) $P(B \mid A)=\frac{P(A \& B)}{P(A)}$

Note: It is often the case that $P(A \& B)=P(B)$
(eg if A is the event of rolling an even number on a die, and B is the event of rolling a 2)
(c) As a variation on (b), $\frac{\text { No. of favourable outcomes }}{\text { No. of possible outcomes }}$
ie $\frac{\text { No. of outcomes where A and B occur }}{\text { No. of outcomes where A occurs }}$,
provided that the outcomes are equally likely

Notes:
(i) If we are able to count outcomes using numbers of combinations [ie $\binom{n}{r}$, then the outcomes will be equally likely.
(ii) It will normally be easier to deal with numbers of combinations, where order isn't important (rather than considering each possible order).

(i)

Method 1

$\frac{5}{11} \times \frac{4}{10} \times \frac{3}{9} \times \frac{2}{8}=\frac{1}{66}$

Method 2

$\frac{\text { No. of favourable outcomes }}{\text { No. of possible outcomes }}=\frac{\binom{5}{4}}{\binom{11}{4}}=\frac{5}{\left(\frac{11(10)(9)(8)}{4!}\right)}=\frac{1}{66}$
[Note that, with this method, we are not considering the order in which the discs are taken; we are just looking at the final result; ie that we have selected 4 discs.]
(ii)

Method 1

$P(2$ nd disc is numbered, given that the 1 st disc is number 3$)$
$\times P(3 \mathrm{rd}$ disc is numbered, given that the 1 st disc is number 3 , and that the 2 nd disc is numbered) $\times \ldots$
$=\frac{4}{10} \times \frac{3}{9} \times \frac{2}{8}=\frac{1}{30}$

Method 2

$P(1$ st disc is number 3 and the other selected discs are numbered)
P (1st disc is number 3)
$=\frac{\frac{1}{11} \times \frac{4}{10} \times \frac{3}{9} \times \frac{2}{8}}{\frac{1}{11}}=\frac{1}{30}$

Method 3

$\frac{\text { No. of favourable outcomes }}{\text { No. of possible outcomes }}=\frac{\binom{4}{3}}{\binom{10}{3}}=\frac{4}{\left(\frac{(10)(9)(8)}{3!}\right)}=\frac{1}{30}$
$\left[\binom{10}{3}\right.$ is the number of ways of choosing the remaining 3 items;
$\binom{4}{3}$ is the number of ways of choosing 3 more numbered discs out of the 4 left.]

(iii) Method 1

One possibility is $3 B N B$ (N is a numbered disc other than 3 ; B is a blank)

The probability of this occurring, given that the 1 st disc is number 3 , is $\frac{6}{10} \times \frac{4}{9} \times \frac{5}{8}=\frac{1}{6}$

As the 2 nd numbered disc could be in 3 positions, and the probability is the same in each case,
the required probability $=3 \times \frac{1}{6}=\frac{1}{2}$

Method 2

$P(1$ st disc is 3 and exactly 1 of the other selected discs is numbered)
P (1st disc is 3)
$=\frac{\frac{1}{11} \times\left[3 \times \frac{4}{10} \times \frac{6}{9} \times \frac{5}{8}\right]}{\frac{1}{11}}=\frac{1}{2}$
[The $2^{\text {nd }}$ numbered disc could be in 3 possible positions: $2^{\text {nd }}, 3^{\text {rd }}$ or 4 th; the probabilities of these are $\frac{4}{10} \times \frac{6}{9} \times \frac{5}{8}, \frac{6}{10} \times \frac{4}{9} \times \frac{5}{8}$
$\& \frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}$; ie they are the same.]

Method 3

$\frac{\text { No. of favourable outcomes }}{\text { No. of possible outcomes }}=\frac{\binom{4}{1} \times\binom{ 6}{2}}{\binom{10}{3}}=\frac{4(15)}{\left(\frac{10(9)(8)}{6}\right)}=\frac{1}{2}$
[Here $\binom{4}{1}$ is the number of ways of choosing the 2nd numbered disc, $\binom{6}{2}$ is the number of ways of choosing the 2 blank discs, and $\binom{10}{3}$ is the number of ways of choosing 3 discs from 10]

(iv) Method 1

Whether we know that the disc numbered 3 was taken $1^{\text {st, }}$ or at some other point, makes no difference to the chance of having obtained a $2^{\text {nd }}$ numbered disc. So the probability is still $\frac{1}{2}$.

Method 2

Examples: N3BB, BNB3
$N 3 B B$ has a probability of $\frac{4}{11} \times \frac{1}{10} \times \frac{6}{9} \times \frac{5}{8}$,
and $B N B 3$ has a probability of $\frac{6}{11} \times \frac{4}{10} \times \frac{5}{9} \times \frac{1}{8}$
Thus all such cases have the same probability.
The number of cases is 4 [the number of possible places for the 3]
$\times 3$ [the number of possible places for the N] $=12$
So required probability is $\frac{P(\text { one such case occurs })}{P(3 \text { occurs })}$
$=\frac{\frac{4}{11} \times \frac{1}{10} \times \frac{6}{9} \times \frac{5}{\frac{5}{8}} \times 12}{1-P(3 \text { doesn't occur })}=\frac{\left(\frac{2}{11}\right)}{1-\frac{10}{11} \times \frac{9}{10} \times \frac{8}{9} \times \frac{9}{8}}=\frac{\left(\frac{2}{11}\right)}{1-\frac{7}{11}}=\frac{1}{2}$

Method 3

Required probability is
$\frac{\text { No. of ways of selecting a } 3 \text { \& exactly } 1 \text { other numbered disc }}{\text { No. of ways of selecting a } 3}$,
where No. of ways of selecting a 3 is
No. of ways of selecting 4 items

- No. of ways of not selecting a 3
$=\binom{11}{4}-\binom{10}{4}$
and the numerator is $\binom{4}{1}\binom{6}{2}$,
so that required probability is $\frac{\binom{4}{1}\binom{6}{2}}{\binom{11}{4}-\binom{10}{4}}=\frac{4(15)}{\frac{11(10)(9)(8)}{4!}-\frac{10(9)(8)(7)}{4!}}$
$=\frac{4(15)(24)}{(10)(9)(8)[11-7]}=\frac{1}{2}$
(v) [Note here that the situation for (v) \& (vi) is different from that of (iii) \& (iv). There is a difference between being told that the $1^{\text {st }}$ disc was numbered (when we then have 3 chances to obtain a $2^{\text {nd }}$ disc), and being told that - at the end of the day - it turned out that at least one numbered disc had been taken: in this case the $1^{\text {st }}$ disc may not have been numbered, so the position is not as strong as when we know that the $1^{\text {st }}$ disc was numbered).]

No. of possible outcomes where a numbered disc is taken $1^{\text {st }}$:
There are 5 ways of choosing a numbered disc for the $1^{\text {st }}$ place, and then $\binom{10}{3}$ ways of filling the remaining places.

No. of favourable outcomes (with exactly 2 numbered discs; one of them being allocated to the $1^{\text {st }}$ place):

There are 5 ways of choosing a numbered disc for the $1^{\text {st }}$ place; then 4 ways of choosing another numbered disc, and then $\binom{6}{2}$ ways of choosing the 2 blank discs.

So $\frac{\text { No. of favourable outcomes }}{\text { No. of possible outcomes }}=\frac{5 \times 4 \times\binom{ 6}{2}}{5 \times\binom{ 10}{3}}=\frac{4 \times 15}{\left(\frac{10(9)(8)}{3!}\right)}=\frac{1}{2}$
(vi) We can break down the number of possible outcomes, by conditioning on how many numbered discs are taken:

1 taken: $5 \times\binom{ 6}{3}$ (5 ways of choosing the numbered disc; $\binom{6}{3}$ ways of choosing the 3 blanks)

2 taken: $\binom{5}{2} \times\binom{ 6}{2}$
3 taken: $\binom{5}{3} \times 6$
4 taken: $\binom{5}{4}$
The total of these is $100+150+60+5=315$
[A quicker approach is:
Total number of ways of selecting 4 items $\left[\binom{11}{4}\right]$,
less number of ways of selecting 4 items, not including a numbered disc $\left[\binom{6}{4}\right]$
$\left.=\binom{11}{4}-\binom{6}{4}=\frac{11(10)(9)(8)}{4!}-\binom{6}{2}=330-15=315\right]$

Number of favourable outcomes (where exactly 2 numbered discs are taken) is $\binom{5}{2} \times\binom{ 6}{2}=10 \times 15=150\left[\binom{5}{2}\right.$ ways of choosing the 2 numbered discs, and $\binom{6}{2}$ ways of choosing the 2 blank discs] So $\frac{\text { No. of favourable outcomes }}{\text { No. of possible outcomes }}=\frac{150}{315}=\frac{30}{63}=\frac{10}{21}$

