STEP 2006, Paper 2, Q10 - Solution (4 pages; 13/4/21)
(i)

Referring to the diagram, by conservation of momentum:
$m u=m v_{A}+k m v_{B}$, so that $u=v_{A}+k v_{B}$
And, by Newton's law of restitution, $v_{B}-v_{A}=\frac{1}{2} u$
Adding (1) \& (2) gives $(k+1) v_{B}=\frac{3 u}{2}$, so that $v_{B}=\frac{3 u}{2(k+1)}$
Then, from (2), $v_{A}=\frac{3 u}{2(k+1)}-\frac{1}{2} u=\frac{u(3-k-1)}{2(k+1)}=\frac{u(2-k)}{2(k+1)}$

For the collision between B and C,

CoM: $k m v_{B}=k m w_{B}+3 m w_{C}$,
so that $k v_{B}=k w_{B}+3 w_{C}$
NLR: $w_{C}-w_{B}=\frac{1}{4} v_{B}$
Substituting for w_{C} from (4) into (3),
$k v_{B}=k w_{B}+3\left(w_{B}+\frac{1}{4} v_{B}\right)$
$\Rightarrow 4 k v_{B}=4 k w_{B}+12 w_{B}+3 v_{B}$
$\Rightarrow v_{B}(4 k-3)=w_{B}(4 k+12)$
$\Rightarrow w_{B}=\frac{v_{B}(4 k-3)}{4(k+3)}=\frac{3 u(4 k-3)}{8(k+1)(k+3)}$
We need to investigate under what circumstances $v_{A}>w_{B}>0$ (when A and B are both moving to the right), or
$-w_{B}>-v_{A}>0$ (when they are both moving to the left); ie $0>v_{A}>w_{B}$

So the required condition is just $v_{A}>w_{B}$
ie $\frac{u(2-k)}{2(k+1)}>\frac{3 u(4 k-3)}{8(k+1)(k+3)}$
or $4(2-k)(k+3)>3(4 k-3)$
or $4 k^{2}+16 k-33<0$
or $(2 k-3)(2 k+11)<0$
(noting that $4 \times 33=(2 \times 3) \times(2 \times 11)$, and that $22-6=16$; and then that the $22 k$ can only be obtained from $2 k(11)$)

Hence, considering the quadratic curve, $-\frac{11}{2}<k<\frac{3}{2}$,
and thus, as $k>0,0<k<\frac{3}{2}$
(ii)

Let T_{1} be the period between the $1^{\text {st }}$ collision of $\mathrm{A} \& \mathrm{~B}$ and the collision of B \& C. Then $T_{1}=\frac{d}{v_{B}}$

From (i), $v_{B}=\frac{3 u}{2(k+1)}$, so that with $k=1, T_{1}=\frac{4 d}{3 u}$
With $k=1, v_{A}=\frac{u(2-k)}{2(k+1)}=\frac{u}{4}$
During T_{1}, A and B have relative speeds $v_{B}-v_{A}=\frac{1}{2} u$, from (i).
So during this period A and B have moved apart by a distance
$d_{1}=\frac{1}{2} u T_{1}=\frac{1}{2} u \cdot \frac{4 d}{3 u}=\frac{2 d}{3}$
With $k=1, w_{B}=\frac{3 u(4 k-3)}{8(k+1)(k+3)}=\frac{3 u}{64}$
Let T_{2} be the period between the collision of B \& C and the $2^{\text {nd }}$ collision of A \& B.

During this time, A and B have relative speeds $w_{B}-v_{A}$
$=\frac{3 u}{64}-\frac{u}{4}=\frac{-13 u}{64}$
and so $T_{2}=\frac{d_{1}}{\left(\frac{13 u}{64}\right)}=\frac{\left(\frac{2 d}{3}\right)}{\left(\frac{13 u}{64}\right)}=\frac{128 d}{39 u}$

Hence the required time, $T_{1}+T_{2}=\frac{4 d}{3 u}+\frac{128 d}{39 u}$
$=\frac{d(52+128)}{39 u}=\frac{180 d}{39 u}=\frac{60 d}{13 u}$, as required.

