STEP 2006, Paper 1, Q3 - Solution (4 pages; 2/3/23)
(i) $1^{\text {st }}$ Part

If $c<0$, then the graph of $y=x^{2}+b x+c$ will either be as in the diagram below, with the minimum at a negative value of x, or similarly at a positive value of x, or at $x=0$. In each case, we can see that the graph crosses the x-axis at two distinct points.

2nd Part

As shown in the diagram below, $c<0$ is not a necessary condition for distinct real roots.

(ii) The diagram shows the situation where there are distinct positive roots.

A necessary condition is that $c>0$.
The turning point has x-coordinate $-\frac{b}{2}$
So another necessary condition is that

In order for there to be two distinct roots, a further necessary condition is that $b^{2}-4 c>0$

These 3 conditions are sufficient because they ensure that the graph appears as in the diagram.

(iii) $1^{\text {st }}$ Part

Considering the gradient of $y=x^{3}+p x+q$:
$\frac{d y}{d x}=3 x^{2}+p$; so when $p>0, \frac{d y}{d x}>0$ for all x; ie y is strictly increasing, and so crosses the x-axis once only.

Thus there is 1 positive real root (and 2 complex roots) of $x^{3}+p x+q=0$ when $p>0$ and $q<0$ (as the y-intercept is negative, so that the curve crosses the x-axis when $x>0$).

2nd Part

If $p<0$ and $q<0$, let $p=-\phi^{2}$ (where $\phi>0$) and consider the simpler graph:

$$
y=x^{3}+p x=x^{3}-\phi^{2} x=x(x-\phi)(x+\phi)
$$

The number of real roots of $x^{3}+p x+q=0$ will then depend on the size of q relative to the height of the local maximum of $y=x^{3}-\phi^{2} x$ (see diagram below).

The maximum occurs when $\frac{d y}{d x}=0$; ie when $3 x^{2}-\phi^{2}=0$, and $x=-\frac{\phi}{\sqrt{3}} ;$ when $y=x\left(x^{2}-\phi^{2}\right)=-\frac{\phi}{\sqrt{3}}\left(\frac{\phi^{2}}{3}-\phi^{2}\right)=\frac{2 \phi^{3}}{3 \sqrt{3}}$
So, when $|q|<\frac{2 \phi^{3}}{3 \sqrt{3}}$, there will be 3 distinct real roots.
When $|q|=\frac{2 \phi^{3}}{3 \sqrt{3}}$, there will be 3 real roots, of which 2 are repeated.

When $|q|>\frac{2 \phi^{3}}{3 \sqrt{3}}$, there will be 1 real root (and 2 complex roots).
Now, $4 p^{3}+27 q^{2}>0 \Leftrightarrow 27 q^{2}>-4 p^{3} \Leftrightarrow 3 \sqrt{3}|q|>2 \phi^{3}$ $\Leftrightarrow|q|>\frac{2 \phi^{3}}{3 \sqrt{3}}$, and similarly for the other cases.

So, if (a) $4 p^{3}+27 q^{2}>0$, there will be 1 real root (and 2 complex roots);
if (b) $4 p^{3}+27 q^{2}=0$, there will be 3 real roots, of which 2 are repeated,
and if (c) $4 p^{3}+27 q^{2}<0$, there will be 3 distinct real roots.
From the above diagram, we can also comment on the signs of the roots:

For (a), the root is positive.
For (b), the repeated root is negative and the other one is positive.

For (c), 2 of the roots are negative and the other is positive.

