## STEP 2005, Paper 3, Q7 - Solution (2 pages; 8/5/20)

As the Examiner's Report mentions, it isn't essential to use the result proved at the start when answering parts (i) \& (ii). In (ii), although a non-standard integral is involved (assuming the initial result is used), the most natural substitution (ie $z^{2}=u+1$ ) turns out to work. Also for (ii), it is odd that the H\&As don't consider separately the case where $n=2$ (apart from mentioning that $n$ can't equal 2). Normally you would be expected to do this.

Also, strictly speaking, $\sqrt{x^{n}+x^{2}}=|x| \sqrt{x^{n-2}+1}$.

Let $u=x^{m}$, so that $d u=m x^{m-1} d x=\frac{m u}{x} d x \Rightarrow \frac{m}{x} d x=\frac{1}{u} d u$
Hence $\int \frac{m}{x f\left(x^{m}\right)} d x=\int \frac{1}{u} \cdot \frac{1}{f(u)} d u=F\left(x^{m}\right)+c$
(i) Let $I=\int \frac{1}{x^{n}-x} d x=\int \frac{1}{x\left(x^{n-1}-1\right)} d x$

Then let $f(u)=u-1 \& m=n-1(n \neq 1)$
Then $I=\frac{1}{m} \int \frac{m}{x f\left(x^{m}\right)} d x=\frac{1}{n-1} F\left(x^{n-1}\right)+c$
where $F(u)=\int \frac{1}{u(u-1)} d u=\int-\frac{1}{u}+\frac{1}{u-1} d u=\ln \left|\frac{u-1}{u}\right|$
Hence $I=\frac{1}{n-1} \ln \left|\frac{x^{n-1}-1}{x^{n-1}}\right|+c$
(ii) Let $J=\int \frac{1}{\sqrt{x^{n}+x^{2}}} d x=\int \frac{1}{x \sqrt{x^{n-2}+1}} d x$

Then let $f(u)=\sqrt{u+1} \& m=n-2$, assuming that $n \neq 2$
Then $J=\frac{1}{m} \int \frac{m}{x f\left(x^{m}\right)} d x=\frac{1}{n-2} F\left(x^{n-2}\right)+c$,
where $F(u)=\int \frac{1}{u \sqrt{u+1}} d u$

Let $z^{2}=u+1$, so that $2 z d z=d u$
and $F(u)=\int \frac{2 z}{\left(z^{2}-1\right) z} d z=\int \frac{1}{z-1}-\frac{1}{z+1} d z$
$=\ln \left|\frac{z-1}{z+1}\right|=\ln \left|\frac{\sqrt{u+1}-1}{\sqrt{u+1}-1}\right|$
Hence $J=\frac{1}{n-2} \ln \left|\frac{\sqrt{x^{n-2}+1}-1}{\sqrt{x^{n-2}+1}+1}\right|+c$, when $n \neq 2$
And when $n=2, J=\frac{1}{\sqrt{2}} \int \frac{1}{x} d x=\frac{1}{\sqrt{2}} \ln |x|+c$

