STEP 2005, Paper 3, Q13 - Solution (2 pages; 14/4/21)
(i) $1^{\text {st }}$ part

Only draws resulting in the numbers 0 to w have any effect: we can consider the game to consist of a sequence of events (which must occur eventually) whereby one of these numbers occurs.

To win exactly $£ 3$, the first 3 such events must result in a number from 1 to w, with the $4^{\text {th }}$ event resulting in a 0 .

2nd part

So P (player wins a total of exactly $£ 3)=\left(\frac{w}{w+1}\right)^{3}\left(\frac{1}{w+1}\right)=\frac{w^{3}}{(w+1)^{4}}$, as required.
$3^{\text {rd }}$ part
Similarly, P (player wins a total of exactly $£ r$) $=\frac{w^{r}}{(w+1)^{r+1}}$

4th part

Hence $E($ total win $)=\sum_{r=0}^{\infty} \frac{r w^{r}}{(w+1)^{r+1}}$
Let $\lambda=\frac{1}{w}$; then $E($ total win $)=\frac{1+\lambda}{w+1} \sum_{r=0}^{\infty} \frac{r}{(1+\lambda)^{r+1}}$
$=-\frac{1+\lambda}{w+1} \frac{d}{d \lambda} \sum_{r=0}^{\infty}(1+\lambda)^{-r}$
$=-\lambda \cdot \frac{w+1}{w+1} \frac{d}{d \lambda}\left(\frac{1}{1-\frac{1}{1+\lambda}}\right)$, using the sum to infinity of a Geometric series with common ratio $\frac{1}{1+\lambda}=\frac{w}{w+1}<1$
$=-\lambda \frac{d}{d \lambda}\left(\frac{1+\lambda}{1+\lambda-1}\right)=-\lambda \frac{d}{d \lambda}\left(\frac{1}{\lambda}+1\right)=-\lambda\left(-\lambda^{-2}\right)=\frac{1}{\lambda}=w$
(ii) Once again, only the numbers 0 to w need to be considered: the pack effectively contains only these numbers.

P (player wins a total of exactly $£ r$)
$=\frac{w}{w+1} \times \frac{w-1}{w} \times \ldots \times \frac{w-(r-1)}{w-(r-2)} \times \frac{1}{w-(r-1)}=\frac{1}{w+1}$
Then $E($ total win $)=\sum_{r=0}^{w} \frac{r}{w+1}=\frac{1}{w+1} \cdot \frac{1}{2} w(w+1)=\frac{w}{2}$, as required.

