[This question seems to be a bit of an aberration, in that it is both very short and very easy (especially for STEP 2) - unless I am missing something!]

1st Part

Let x be an irrational number, and suppose that its cube root is the rational number $\frac{p}{q}$.
Then $\left(\frac{p}{q}\right)^{3}=x$, and therefore $x=\frac{p^{3}}{q^{3}}$, which contradicts the assumption that x is irrational. Hence the cube root of x must be irrational.

2nd Part

$u_{1}=5^{\frac{1}{3}}$ or $\sqrt[3]{5}$
Given that $\sqrt[3]{5}$ is irrational, the result (that u_{n} is irrational) is true for $n=1$.

Suppose that the result is true for $n=k$, so that $5\left(\frac{1}{3^{k}}\right)$ is irrational.
Then $u_{k+1}=5^{\left(\frac{1}{3^{k+1}}\right)}=5^{\left.\frac{1}{3} \frac{1}{3^{k}}\right)}=\left[5^{\left(\frac{1}{3^{k}}\right)}\right]^{\frac{1}{3}}$,
which, by the $1^{\text {st }}$ Part, is irrational.
So, if the true is true for $n=k$, then it will be true for $n=k+1$. As the result is true for $n=1$, it is therefore true for $n=2,3, \ldots$, and, hence by the principle of induction, it is true for integer
$n \geq 1$.

3rd Part

The sequence $u_{n}=m .5^{\left(\frac{1}{3^{n}}\right)}$ [surely] satisfies the requirement [!?] [Clearly an irrational number multipled by an integer is an irrational number, and this can easily be demonstrated using a proof by contradiction.]

