STEP 2003, Paper 2, Q2 - Solution (3 pages; 27/3/24)

1st Part

$\theta=\frac{\pi}{3}$

2nd Part

The result to be proved can be written as
$\frac{\pi}{3}-\arctan \left(\frac{\sqrt{3}}{2}\right)=\arccos \left(\frac{5}{\sqrt{28}}\right)$
From the 1 st Part, $4 \cos \left(\frac{\pi}{3}\right)+2 \sqrt{3} \sin \left(\frac{\pi}{3}\right)=5 \quad\left(^{*}\right)$
Now, if $\tan \alpha=\frac{\sqrt{3}}{2}$ for an acute α (so that $\alpha=\arctan \left(\frac{\sqrt{3}}{2}\right)$),
then $\cos \alpha=\frac{2}{\sqrt{7}}\left(\right.$ as $\left.2^{2}+(\sqrt{3})^{2}=(\sqrt{7})^{2}\right)$, and $\sin \alpha=\frac{\sqrt{3}}{\sqrt{7}}\left({ }^{* *}\right)$
Then $\left(^{*}\right) \Rightarrow \frac{4}{\sqrt{28}} \cos \left(\frac{\pi}{3}\right)+\frac{2 \sqrt{3}}{\sqrt{28}} \sin \left(\frac{\pi}{3}\right)=\frac{5}{\sqrt{28}}$
or $\frac{2}{\sqrt{7}} \cos \left(\frac{\pi}{3}\right)+\frac{\sqrt{3}}{\sqrt{7}} \sin \left(\frac{\pi}{3}\right)=\frac{5}{\sqrt{28}}$
Hence, from $\left({ }^{* *}\right): \cos \left(\frac{\pi}{3}-\alpha\right)=\frac{5}{\sqrt{28}}$, where $\alpha=\arctan \left(\frac{\sqrt{3}}{2}\right)$, and it follows that
$\frac{\pi}{3}-\alpha=\arccos \left(\frac{5}{\sqrt{28}}\right)+2 n \pi$ or $-\arccos \left(\frac{5}{\sqrt{28}}\right)+2 m \pi$
(for integer $n \& m$ to be determined)
If $\frac{\pi}{3}=\alpha+\arccos \left(\frac{5}{\sqrt{28}}\right)+2 n \pi$, then n must be 0 , as
$\alpha \& \arccos \left(\frac{5}{\sqrt{28}}\right)$ are both acute $(n \geq 1$ makes the RHS $>2 \pi$, whilst $n<0$ makes the RHS <0)

And if $\frac{\pi}{3}=\alpha-\arccos \left(\frac{5}{\sqrt{28}}\right)+2 m \pi$,
so that $\frac{\pi}{3}+\arccos \left(\frac{5}{\sqrt{28}}\right)=\alpha+2 m \pi$,
Then in the same way, m must be 0
But $\frac{\pi}{3}-\alpha=\frac{\pi}{3}-\arctan \left(\frac{\sqrt{3}}{2}\right)>\frac{\pi}{3}-\arctan (\sqrt{3})=\frac{\pi}{3}-\frac{\pi}{3}=0$,
so that $\frac{\pi}{3}-\alpha>0$, and therefore m cannot equal 0 .
Hence $\frac{\pi}{3}-\arctan \left(\frac{\sqrt{3}}{2}\right)=\arccos \left(\frac{5}{\sqrt{28}}\right)$, as required.

Alternative approach

If $\cos \alpha=\frac{5}{\sqrt{28}}$, then $\tan \alpha=\frac{\sqrt{28-25}}{5}$
Then show that $\tan (\alpha+\beta)=\tan \left(\frac{\pi}{3}\right)$, where $\tan \beta=\frac{\sqrt{3}}{2}$,
so that $\alpha+\beta=\frac{\pi}{3}+n \pi$,
and show that $n=0$

3rd Part

The result to be proved can be written as
$\frac{\pi}{4}+\arctan \left(\frac{3}{4}\right)=\arcsin \left(\frac{7 \sqrt{2}}{10}\right)$
Noting that $\arctan \left(\frac{3}{4}\right)=\arcsin \left(\frac{3}{5}\right)=\arccos \left(\frac{4}{5}\right)$,
consider $\sin \left(\frac{\pi}{4}+\arctan \left(\frac{3}{4}\right)\right)$
$=\sin \left(\frac{\pi}{4}\right) \cos \left(\arccos \left(\frac{4}{5}\right)\right)+\cos \left(\frac{\pi}{4}\right) \sin \left(\arcsin \left(\frac{3}{5}\right)\right)$
$=\frac{1}{\sqrt{2}} \cdot \frac{4}{5}+\frac{1}{\sqrt{2}} \cdot \frac{3}{5}=\frac{7}{5 \sqrt{2}}=\frac{7 \sqrt{2}}{10}$
Hence $\frac{\pi}{4}+\arctan \left(\frac{3}{4}\right)=\arcsin \left(\frac{7 \sqrt{2}}{10}\right)+2 n \pi$
or $\pi-\arcsin \left(\frac{7 \sqrt{2}}{10}\right)+2 m \pi$
(for integer $n \& m$ to be determined)
As $0<\frac{\pi}{4}+\arctan \left(\frac{3}{4}\right)<\frac{\pi}{4}+\arctan (1)=\frac{\pi}{2}$,
n can only be 0 ;
and since $\frac{\pi}{2}<\pi-\arcsin \left(\frac{7 \sqrt{2}}{10}\right)<\pi$, no m is possible.
And so $\frac{\pi}{4}+\arctan \left(\frac{3}{4}\right)=\arcsin \left(\frac{7 \sqrt{2}}{10}\right)$, as required.

