STEP 2003, Paper 2, Q2 - Solution (3 pages; 27/3/24)

1st Part

$$\theta = \frac{\pi}{3}$$

2nd Part

The result to be proved can be written as

 $\frac{\pi}{3} - \arctan\left(\frac{\sqrt{3}}{2}\right) = \arccos\left(\frac{5}{\sqrt{28}}\right)$ From the 1st Part, $4\cos\left(\frac{\pi}{3}\right) + 2\sqrt{3}\sin\left(\frac{\pi}{3}\right) = 5$ (*) Now, if $tan\alpha = \frac{\sqrt{3}}{2}$ for an acute α (so that $\alpha = \arctan\left(\frac{\sqrt{3}}{2}\right)$), then $\cos\alpha = \frac{2}{\sqrt{7}}$ (as $2^2 + (\sqrt{3})^2 = (\sqrt{7})^2$), and $\sin\alpha = \frac{\sqrt{3}}{\sqrt{7}}$ (**) Then $(*) \Rightarrow \frac{4}{\sqrt{28}} \cos\left(\frac{\pi}{3}\right) + \frac{2\sqrt{3}}{\sqrt{28}} \sin\left(\frac{\pi}{3}\right) = \frac{5}{\sqrt{29}}$ or $\frac{2}{\sqrt{7}}\cos\left(\frac{\pi}{2}\right) + \frac{\sqrt{3}}{\sqrt{7}}\sin\left(\frac{\pi}{2}\right) = \frac{5}{\sqrt{28}}$ Hence, from (**): $\cos\left(\frac{\pi}{3} - \alpha\right) = \frac{5}{\sqrt{28}}$, where $\alpha = \arctan\left(\frac{\sqrt{3}}{2}\right)$, and it follows that $\frac{\pi}{2} - \alpha = \arccos\left(\frac{5}{\sqrt{28}}\right) + 2n\pi$ or $-\arccos\left(\frac{5}{\sqrt{28}}\right) + 2m\pi$ (for integer *n* & *m* to be determined) If $\frac{\pi}{3} = \alpha + \arccos\left(\frac{5}{\sqrt{28}}\right) + 2n\pi$, then *n* must be 0, as $\alpha \& \arccos\left(\frac{5}{\sqrt{28}}\right)$ are both acute $(n \ge 1 \text{ makes the RHS} > 2\pi$, whilst n < 0 makes the RHS < 0)

fmng.uk

And if
$$\frac{\pi}{3} = \alpha - \arccos\left(\frac{5}{\sqrt{28}}\right) + 2m\pi$$
,
so that $\frac{\pi}{3} + \arccos\left(\frac{5}{\sqrt{28}}\right) = \alpha + 2m\pi$,
Then in the same way, *m* must be 0
But $\frac{\pi}{3} - \alpha = \frac{\pi}{3} - \arctan\left(\frac{\sqrt{3}}{2}\right) > \frac{\pi}{3} - \arctan(\sqrt{3}) = \frac{\pi}{3} - \frac{\pi}{3} = 0$,
so that $\frac{\pi}{3} - \alpha > 0$, and therefore *m* cannot equal 0.
Hence $\frac{\pi}{3} - \arctan\left(\frac{\sqrt{3}}{2}\right) = \arccos\left(\frac{5}{\sqrt{28}}\right)$, as required.

Alternative approach

If $\cos \alpha = \frac{5}{\sqrt{28}}$, then $\tan \alpha = \frac{\sqrt{28-25}}{5}$ Then show that $\tan(\alpha + \beta) = \tan(\frac{\pi}{3})$, where $\tan\beta = \frac{\sqrt{3}}{2}$, so that $\alpha + \beta = \frac{\pi}{3} + n\pi$, and show that n = 0

3rd Part

The result to be proved can be written as

$$\frac{\pi}{4} + \arctan\left(\frac{3}{4}\right) = \arcsin\left(\frac{7\sqrt{2}}{10}\right)$$
Noting that $\arctan\left(\frac{3}{4}\right) = \arcsin\left(\frac{3}{5}\right) = \arccos\left(\frac{4}{5}\right)$,
consider $\sin\left(\frac{\pi}{4} + \arctan\left(\frac{3}{4}\right)\right)$

$$= \sin\left(\frac{\pi}{4}\right)\cos\left(\arccos\left(\frac{4}{5}\right)\right) + \cos\left(\frac{\pi}{4}\right)\sin\left(\arcsin\left(\frac{3}{5}\right)\right)$$

fmng.uk

$$= \frac{1}{\sqrt{2}} \cdot \frac{4}{5} + \frac{1}{\sqrt{2}} \cdot \frac{3}{5} = \frac{7}{5\sqrt{2}} = \frac{7\sqrt{2}}{10}$$

Hence $\frac{\pi}{4} + \arctan\left(\frac{3}{4}\right) = \arcsin\left(\frac{7\sqrt{2}}{10}\right) + 2n\pi$
or $\pi - \arcsin\left(\frac{7\sqrt{2}}{10}\right) + 2m\pi$

(for integer *n* & *m* to be determined)

As
$$0 < \frac{\pi}{4} + \arctan\left(\frac{3}{4}\right) < \frac{\pi}{4} + \arctan(1) = \frac{\pi}{2}$$
,

n can only be 0;

and since $\frac{\pi}{2} < \pi - \arcsin\left(\frac{7\sqrt{2}}{10}\right) < \pi$, no *m* is possible. And so $\frac{\pi}{4} + \arctan\left(\frac{3}{4}\right) = \arcsin\left(\frac{7\sqrt{2}}{10}\right)$, as required.