Logarithms (STEP) (2 pages; 14/7/21)

(1) $log_a b = c \iff a^c = b$

(2) eg
$$3 + 2log_2 5 = 3log_2 2 + log_2(5^2)$$

= $log_2(2^3) + log_2(5^2) = log_2(8 \times 25) = log_2(200)$

(3) $log_a b \ log_b c = log_a c$ or $log_b c = \frac{log_a c}{log_a b}$ Proof: Let $b = a^x \& c = b^y$ Then $c = (a^x)^y = a^{xy}$ and $log_a c = xy = log_a b \ log_b c$

Special case:
$$log_b c = \frac{1}{log_c b}$$

(4) As $log_8 8 = 1$ and $log_8 64 = 2$, and as $y = log_8 x$ is a concave function $\left(\frac{dy}{dx}\right)$ is decreasing; ie $\frac{d^2y}{dx^2} < 0$, linear interpolation $\Rightarrow log_8 \left[\frac{1}{2}(8+64)\right] > \frac{1}{2}(1+2)$ ie $log_8 36 > \frac{3}{2}$

(5) To find an upper bound for eg log_2 3: Suppose that log_2 3 < $\frac{m}{n}$

fmng.uk

Then $3 < 2^{(\frac{m}{n})}$ and $3^n < 2^m$ As $243 = 3^5 < 2^8 = 256$, $log_2 3 < \frac{8}{5}$ [and $\frac{8}{5}$ is a reasonably low upper bound, as 243 & 256 are

reasonably close]

(6) eg
$$log_2 12 = log_2 (3 \times 4) = log_2 3 + log_2 4 < \frac{8}{5} + 2 = \frac{18}{5}$$
,
from (5)

(7) eg
$$log_{36}8 = \frac{1}{log_8 36} < \frac{2}{3}$$
, from (4)

(8) Example: Show that $log_5 10 < \frac{3}{2}$

 $log_5 10 < \frac{3}{2} \Leftrightarrow 10 < 5^{\left(\frac{3}{2}\right)}$ (as the log function is increasing) $\Leftrightarrow 10^2 < 5^3 \Leftrightarrow 100 < 125$