(1) $\log _{a} b=c \Leftrightarrow a^{c}=b$
(2) eg $3+2 \log _{2} 5=3 \log _{2} 2+\log _{2}\left(5^{2}\right)$
$=\log _{2}\left(2^{3}\right)+\log _{2}\left(5^{2}\right)=\log _{2}(8 \times 25)=\log _{2}(200)$
(3) $\log _{a} b \log _{b} c=\log _{a} c$ or $\log _{b} c=\frac{\log _{a} c}{\log _{a} b}$

Proof: Let $b=a^{x} \& c=b^{y}$
Then $c=\left(a^{x}\right)^{y}=a^{x y}$
and $\log _{a} c=x y=\log _{a} b \log _{b} c$

Special case: $\log _{b} c=\frac{1}{\log _{c} b}$
(4) As $\log _{8} 8=1$ and $\log _{8} 64=2$, and as $y=\log _{8} x$ is a concave function ($\frac{d y}{d x}$ is decreasing; ie $\frac{d^{2} y}{d x^{2}}<0$), linear interpolation
$\Rightarrow \log _{8}\left[\frac{1}{2}(8+64)\right]>\frac{1}{2}(1+2)$
ie $\log _{8} 36>\frac{3}{2}$
(5) To find an upper bound for eg $\log _{2} 3$:

Suppose that $\log _{2} 3<\frac{m}{n}$

Then $3<2^{\left(\frac{m}{n}\right)}$ and $3^{n}<2^{m}$
As $243=3^{5}<2^{8}=256, \log _{2} 3<\frac{8}{5}$
[and $\frac{8}{5}$ is a reasonably low upper bound, as $243 \& 256$ are reasonably close]
(6) eg $\log _{2} 12=\log _{2}(3 \times 4)=\log _{2} 3+\log _{2} 4<\frac{8}{5}+2=\frac{18}{5}$, from (5)
(7) eg $\log _{36} 8=\frac{1}{\log _{8} 36}<\frac{2}{3}$, from (4)
(8) Example: Show that $\log _{5} 10<\frac{3}{2}$
$\log _{5} 10<\frac{3}{2} \Leftrightarrow 10<5^{\left(\frac{3}{2}\right)}$ (as the log function is increasing)
$\Leftrightarrow 10^{2}<5^{3} \Leftrightarrow 100<125$

