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STEP  - Misc. Topic Notes (6 pages; 2/6/23)  
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(A) Tests for divisibility 

(1) If the sum of the digits of a number is a multiple of 3, then the  

number itself is a multiple of 3; and similarly for 9. 

 

(2) 11 × 325847 = 3584317  

and  3 − 5 + 8 − 4 + 3 − 1 + 7 = 11 , which is a multiple of 11 

This is true in all cases: If 𝑎 − 𝑏 + 𝑐 − 𝑑 + ⋯ − 𝑧  is a multiple of 

11, then 𝑎𝑏𝑐𝑑 … 𝑧 is a multiple of 11. 

[and also for  𝑎 − 𝑏 + 𝑐 − 𝑑 + ⋯ + 𝑦] 
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(B) Weak & Strong Induction 

[𝑃(𝑘) is the proposition that a particular result is true for 𝑛 = 𝑘] 

'Weak' induction is just the ordinary method 

'Strong' induction is where we show that if 𝑃(𝑘 − 𝑚), 

𝑃(𝑘 − 𝑚 + 1), … 𝑃(𝑘) are correct, then 𝑃(𝑘 + 1) will be correct. 

We then have to establish that 𝑃(1), 𝑃(2), … 𝑃(𝑚 + 1) are correct. 

(Weak induction corresponds to 𝑚 = 0. )  

 

Example: 𝑔𝑛 is defined recursively as (𝑛3 − 3𝑛2 + 2𝑛)𝑔𝑛−3 for 

𝑛 ≥ 4, and 𝑔1 = 1, 𝑔2 = 2, 𝑔3 = 6 

Show that 𝑔𝑛 = 𝑛! for 𝑛 ≥ 1 

Solution 

Assume that the result is true for  𝑛 = 𝑘 − 2, 𝑘 − 1 & 𝑘. 

Then  𝑔𝑘+1 = ((𝑘 + 1)3 − 3(𝑘 + 1)2 + 2(𝑘 + 1))𝑔𝑘−2 

= (𝑘 + 1)(𝑘2 + 2𝑘 + 1 − 3𝑘 − 3 + 2)(𝑘 − 2)!   

= (𝑘 + 1)(𝑘2 − 𝑘)(𝑘 − 2)!   

= (𝑘 + 1)𝑘(𝑘 − 1)(𝑘 − 2)!  

= (𝑘 + 1)!  

So that the result is true for  𝑛 = 𝑘 + 1  if it is true for 

𝑛 = 𝑘 − 2, 𝑘 − 1 & 𝑘.  

As it is true for 𝑛 = 1, 2 & 3, it is therefore true for 𝑛 = 4, 5 , … , 

and hence, by the principle of induction, it is true for all positive 

integers. 
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(C) Series 

(1) ∑ 𝑟 =𝑛
𝑟=1 1 + 2 + 3 + ⋯ + 𝑛 =

1

2
 𝑛(𝑛 + 1) 

[Informal proof: The average size of the terms being added is  

1

2
(1 + 𝑛), and there are 𝑛 terms.] 

 

(2) See STEP 2008, P3, Q2 for a method to obtain 𝑆𝑘(𝑛) = ∑ 𝑟𝑘𝑛
𝑟=1  

for any 𝑛.  

For example, 𝑆4(𝑛) =
1

30
𝑛(𝑛 + 1)(2𝑛 + 1)(3𝑛2 + 3𝑛 − 1) 

 

(3) Taylor & Maclaurin expansions 

(i) Maclaurin: 𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) + ⋯ 

(ii) Taylor I: 𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) +
(𝑥−𝑎)2

2!
𝑓′′(𝑎) + ⋯ 

(iii) Taylor II: 𝑓(𝑥 + 𝑎) = 𝑓(𝑎) + 𝑥𝑓′(𝑎) +
𝑥2

2!
𝑓′′(𝑎) + ⋯ 

[𝑥 = 0 gives the Maclaurin expansion] 

 

(D) Factorisations 

(1)(i)  𝑥2 − 𝑦2 = (𝑥 + 𝑦)(𝑥 − 𝑦) 

(ii) 𝑥3 − 𝑦3 = (𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2)  

[Let 𝑓(𝑥) = 𝑥3 − 𝑦3. Then 𝑓(𝑦) = 0, and so 𝑥 − 𝑦 is a factor of 

𝑥3 − 𝑦3 , by the Factor Theorem.] 

𝑥3 + 𝑦3 = (𝑥 + 𝑦)(𝑥2 − 𝑥𝑦 + 𝑦2)  

(iii)  𝑥𝑛 − 𝑦𝑛 = (𝑥 − 𝑦)(𝑥𝑛−1 + 𝑥𝑛−2𝑦 + ⋯ + 𝑥𝑦𝑛−2 + 𝑦𝑛−1)  
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or  (𝑥 + 𝑦)(𝑥𝑛−1 − 𝑥𝑛−2𝑦 + ⋯ + 𝑥𝑦𝑛−2 − 𝑦𝑛−1) , if 𝑛 is even 

𝑥𝑛 + 𝑦𝑛 = (𝑥 + 𝑦)(𝑥𝑛−1 − 𝑥𝑛−2𝑦 + ⋯ − 𝑥𝑦𝑛−2 + 𝑦𝑛−1) if 𝑛 is odd 

 

(2) Let 𝑓(𝑛) be the number of factors of 𝑛 (including 1). 

If 𝑛 = 𝑝𝑞, where 𝑝 & 𝑞 have no common factors (other than 1), 

then  𝑓(𝑛) = 𝑓(𝑝)𝑓(𝑞). 

[eg 100 = 22 × 52; factors are obtained from 
{1, 2, 4} with {1, 5, 25}, giving a total of 3 × 3 = 9 factors: 

1, 5, 25, 2, 10, 50, 4, 20, 100] 

 

(E) Integer solutions 

eg 𝑥𝑦 − 8𝑥 + 6𝑦 = 90  

can be rearranged to (𝑥 + 6)(𝑦 − 8) = 42  

 

(F) Trinomial expansions 

(i) (𝑎 + 𝑏 + 𝑐)2 = (𝑎2 + 𝑏2 + 𝑐2) + 2(𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐) 

 

(ii) (𝑎 + 𝑏 + 𝑐)3 = (𝑎3 + 𝑏3 + 𝑐3)  

+3(𝑎2𝑏 + 𝑎2𝑐 + 𝑏2𝑎 + 𝑏2𝑐 + 𝑐2𝑎 + 𝑐2𝑏)  

+6𝑎𝑏𝑐  

(iii) (𝑎 + 𝑏 + 𝑐)4 = (𝑎4 + 𝑏4 + 𝑐4) 

+4(𝑎3𝑏 + 𝑎3𝑐 + 𝑏3𝑎 + 𝑏3𝑐 + 𝑐3𝑎 + 𝑐3𝑏) 

+6(𝑎2𝑏2 + 𝑎2𝑐2 + 𝑏2𝑐2) + 12(𝑎2𝑏𝑐 + 𝑏2𝑎𝑐 + 𝑐2𝑎𝑏)  

(iv) (𝑎 + 𝑏 + 𝑐)𝑛 =  ∑ (
𝑛

𝑖, 𝑗, 𝑘) 𝑎𝑖𝑏𝑗𝑐𝑘
𝑖,𝑗,𝑘

(𝑖+𝑗+𝑘=𝑛)

, 
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where  (
𝑛

𝑖, 𝑗, 𝑘) =
𝑛!

𝑖!𝑗!𝑘!
 

 

(G) Equating coefficients 

Example: To divide 𝑓(𝑥) = 𝑥3 + 𝑥2 − 11𝑥 + 10 by 𝑥 − 2  

First of all, 𝑓(2) = 8 + 4 − 22 + 10 = 0, so that there is no 

remainder. 

Then 𝑥3 + 𝑥2 − 11𝑥 + 10 = (𝑥 − 2)(𝑥2 + 𝑎𝑥 − 5)  

Equating coefficients of 𝑥2: 1 = 𝑎 − 2, so that 𝑎 = 3 

(Check: Equating coefficients of 𝑥: −11 = −5 − 2𝑎, so that  𝑎 = 3) 

This method is usually quicker than long division. 

 

(H) Polynomials 

(1) Integer roots 

Let 𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 

where 𝑛 ≥ 2 and the 𝑎𝑖  are integers, with 𝑎0 ≠ 0. 

Then it can be shown that any rational root of the equation 

𝑓(𝑥) = 0 will be an integer.  

Proof 

Suppose that there is a rational root 
𝑝

𝑞
 , where 𝑝 & 𝑞 are integers 

with no common factor greater than 1 and 𝑞 > 0. 

Then  (
𝑝

𝑞
)

𝑛
+ 𝑎𝑛−1 (

𝑝

𝑞
)

𝑛−1
+ ⋯ + 𝑎2 (

𝑝

𝑞
)

2
+ 𝑎1 (

𝑝

𝑞
) + 𝑎0 = 0 

and, multiplying by 𝑞𝑛−1: 
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𝑝𝑛

𝑞
+ 𝑎𝑛−1𝑝𝑛−1 + 𝑎𝑛−2𝑝𝑛−2𝑞 + ⋯ + 𝑎1𝑝𝑞𝑛−2 + 𝑎1𝑞𝑛−1 = 0  

Then, as all the terms from 𝑎𝑛−1𝑝𝑛−1 onwards are integers, it 

follows that 
𝑝𝑛

𝑞
 is also an integer, and hence 𝑞 = 1 (as 𝑝 & 𝑞 have  

no common factor greater than 1), and the root is an integer. 

 

(I) Hyperbolic Functions 

𝑎𝑟𝑠𝑖𝑛ℎ𝑥 = ln(𝑥 + √𝑥2 + 1) ; 𝑎𝑟𝑐𝑜𝑠ℎ𝑥 = ln(𝑥 + √𝑥2 − 1)  

Note that 𝑐𝑜𝑠ℎ𝑦 = 𝑥 ⇒ 𝑦 = ±𝑎𝑟𝑐𝑜𝑠ℎ𝑥 = ± ln(𝑥 + √𝑥2 − 1), 

which can be shown to equal ln(𝑥 ± √𝑥2 − 1) 

[though note that −ln (𝑎 + 𝑏) ≠ ln (𝑎 − 𝑏) in general] 


