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STEP  - Misc. Topic Notes (6 pages; 2/6/23)  

 

Contents 

(A) Tests for divisibility 

(B) Weak and Strong Induction 

(C) Series 

(D) Factorisations 

(E) Integer solutions 

(F) Trinomial expansions 

(G) Equating coefficients 

(H) Polynomials 

(I) Hyperbolic Functions 

 

(A) Tests for divisibility 

(1) If the sum of the digits of a number is a multiple of 3, then the  

number itself is a multiple of 3; and similarly for 9. 

 

(2) 11 × 325847 = 3584317  

and  3 − 5 + 8 − 4 + 3 − 1 + 7 = 11 , which is a multiple of 11 

This is true in all cases: If 𝑎 − 𝑏 + 𝑐 − 𝑑 + ⋯ − 𝑧  is a multiple of 

11, then 𝑎𝑏𝑐𝑑 … 𝑧 is a multiple of 11. 

[and also for  𝑎 − 𝑏 + 𝑐 − 𝑑 + ⋯ + 𝑦] 
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(B) Weak & Strong Induction 

[𝑃(𝑘) is the proposition that a particular result is true for 𝑛 = 𝑘] 

'Weak' induction is just the ordinary method 

'Strong' induction is where we show that if 𝑃(𝑘 − 𝑚), 

𝑃(𝑘 − 𝑚 + 1), … 𝑃(𝑘) are correct, then 𝑃(𝑘 + 1) will be correct. 

We then have to establish that 𝑃(1), 𝑃(2), … 𝑃(𝑚 + 1) are correct. 

(Weak induction corresponds to 𝑚 = 0. )  

 

Example: 𝑔𝑛 is defined recursively as (𝑛3 − 3𝑛2 + 2𝑛)𝑔𝑛−3 for 

𝑛 ≥ 4, and 𝑔1 = 1, 𝑔2 = 2, 𝑔3 = 6 

Show that 𝑔𝑛 = 𝑛! for 𝑛 ≥ 1 

Solution 

Assume that the result is true for  𝑛 = 𝑘 − 2, 𝑘 − 1 & 𝑘. 

Then  𝑔𝑘+1 = ((𝑘 + 1)3 − 3(𝑘 + 1)2 + 2(𝑘 + 1))𝑔𝑘−2 

= (𝑘 + 1)(𝑘2 + 2𝑘 + 1 − 3𝑘 − 3 + 2)(𝑘 − 2)!   

= (𝑘 + 1)(𝑘2 − 𝑘)(𝑘 − 2)!   

= (𝑘 + 1)𝑘(𝑘 − 1)(𝑘 − 2)!  

= (𝑘 + 1)!  

So that the result is true for  𝑛 = 𝑘 + 1  if it is true for 

𝑛 = 𝑘 − 2, 𝑘 − 1 & 𝑘.  

As it is true for 𝑛 = 1, 2 & 3, it is therefore true for 𝑛 = 4, 5 , … , 

and hence, by the principle of induction, it is true for all positive 

integers. 
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(C) Series 

(1) ∑ 𝑟 =𝑛
𝑟=1 1 + 2 + 3 + ⋯ + 𝑛 =

1

2
 𝑛(𝑛 + 1) 

[Informal proof: The average size of the terms being added is  

1

2
(1 + 𝑛), and there are 𝑛 terms.] 

 

(2) See STEP 2008, P3, Q2 for a method to obtain 𝑆𝑘(𝑛) = ∑ 𝑟𝑘𝑛
𝑟=1  

for any 𝑛.  

For example, 𝑆4(𝑛) =
1

30
𝑛(𝑛 + 1)(2𝑛 + 1)(3𝑛2 + 3𝑛 − 1) 

 

(3) Taylor & Maclaurin expansions 

(i) Maclaurin: 𝑓(𝑥) = 𝑓(0) + 𝑥𝑓′(0) +
𝑥2

2!
𝑓′′(0) + ⋯ 

(ii) Taylor I: 𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)𝑓′(𝑎) +
(𝑥−𝑎)2

2!
𝑓′′(𝑎) + ⋯ 

(iii) Taylor II: 𝑓(𝑥 + 𝑎) = 𝑓(𝑎) + 𝑥𝑓′(𝑎) +
𝑥2

2!
𝑓′′(𝑎) + ⋯ 

[𝑥 = 0 gives the Maclaurin expansion] 

 

(D) Factorisations 

(1)(i)  𝑥2 − 𝑦2 = (𝑥 + 𝑦)(𝑥 − 𝑦) 

(ii) 𝑥3 − 𝑦3 = (𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2)  

[Let 𝑓(𝑥) = 𝑥3 − 𝑦3. Then 𝑓(𝑦) = 0, and so 𝑥 − 𝑦 is a factor of 

𝑥3 − 𝑦3 , by the Factor Theorem.] 

𝑥3 + 𝑦3 = (𝑥 + 𝑦)(𝑥2 − 𝑥𝑦 + 𝑦2)  

(iii)  𝑥𝑛 − 𝑦𝑛 = (𝑥 − 𝑦)(𝑥𝑛−1 + 𝑥𝑛−2𝑦 + ⋯ + 𝑥𝑦𝑛−2 + 𝑦𝑛−1)  
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or  (𝑥 + 𝑦)(𝑥𝑛−1 − 𝑥𝑛−2𝑦 + ⋯ + 𝑥𝑦𝑛−2 − 𝑦𝑛−1) , if 𝑛 is even 

𝑥𝑛 + 𝑦𝑛 = (𝑥 + 𝑦)(𝑥𝑛−1 − 𝑥𝑛−2𝑦 + ⋯ − 𝑥𝑦𝑛−2 + 𝑦𝑛−1) if 𝑛 is odd 

 

(2) Let 𝑓(𝑛) be the number of factors of 𝑛 (including 1). 

If 𝑛 = 𝑝𝑞, where 𝑝 & 𝑞 have no common factors (other than 1), 

then  𝑓(𝑛) = 𝑓(𝑝)𝑓(𝑞). 

[eg 100 = 22 × 52; factors are obtained from 
{1, 2, 4} with {1, 5, 25}, giving a total of 3 × 3 = 9 factors: 

1, 5, 25, 2, 10, 50, 4, 20, 100] 

 

(E) Integer solutions 

eg 𝑥𝑦 − 8𝑥 + 6𝑦 = 90  

can be rearranged to (𝑥 + 6)(𝑦 − 8) = 42  

 

(F) Trinomial expansions 

(i) (𝑎 + 𝑏 + 𝑐)2 = (𝑎2 + 𝑏2 + 𝑐2) + 2(𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐) 

 

(ii) (𝑎 + 𝑏 + 𝑐)3 = (𝑎3 + 𝑏3 + 𝑐3)  

+3(𝑎2𝑏 + 𝑎2𝑐 + 𝑏2𝑎 + 𝑏2𝑐 + 𝑐2𝑎 + 𝑐2𝑏)  

+6𝑎𝑏𝑐  

(iii) (𝑎 + 𝑏 + 𝑐)4 = (𝑎4 + 𝑏4 + 𝑐4) 

+4(𝑎3𝑏 + 𝑎3𝑐 + 𝑏3𝑎 + 𝑏3𝑐 + 𝑐3𝑎 + 𝑐3𝑏) 

+6(𝑎2𝑏2 + 𝑎2𝑐2 + 𝑏2𝑐2) + 12(𝑎2𝑏𝑐 + 𝑏2𝑎𝑐 + 𝑐2𝑎𝑏)  

(iv) (𝑎 + 𝑏 + 𝑐)𝑛 =  ∑ (
𝑛

𝑖, 𝑗, 𝑘) 𝑎𝑖𝑏𝑗𝑐𝑘
𝑖,𝑗,𝑘

(𝑖+𝑗+𝑘=𝑛)

, 
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where  (
𝑛

𝑖, 𝑗, 𝑘) =
𝑛!

𝑖!𝑗!𝑘!
 

 

(G) Equating coefficients 

Example: To divide 𝑓(𝑥) = 𝑥3 + 𝑥2 − 11𝑥 + 10 by 𝑥 − 2  

First of all, 𝑓(2) = 8 + 4 − 22 + 10 = 0, so that there is no 

remainder. 

Then 𝑥3 + 𝑥2 − 11𝑥 + 10 = (𝑥 − 2)(𝑥2 + 𝑎𝑥 − 5)  

Equating coefficients of 𝑥2: 1 = 𝑎 − 2, so that 𝑎 = 3 

(Check: Equating coefficients of 𝑥: −11 = −5 − 2𝑎, so that  𝑎 = 3) 

This method is usually quicker than long division. 

 

(H) Polynomials 

(1) Integer roots 

Let 𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 

where 𝑛 ≥ 2 and the 𝑎𝑖  are integers, with 𝑎0 ≠ 0. 

Then it can be shown that any rational root of the equation 

𝑓(𝑥) = 0 will be an integer.  

Proof 

Suppose that there is a rational root 
𝑝

𝑞
 , where 𝑝 & 𝑞 are integers 

with no common factor greater than 1 and 𝑞 > 0. 

Then  (
𝑝

𝑞
)

𝑛
+ 𝑎𝑛−1 (

𝑝

𝑞
)

𝑛−1
+ ⋯ + 𝑎2 (

𝑝

𝑞
)

2
+ 𝑎1 (

𝑝

𝑞
) + 𝑎0 = 0 

and, multiplying by 𝑞𝑛−1: 
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𝑝𝑛

𝑞
+ 𝑎𝑛−1𝑝𝑛−1 + 𝑎𝑛−2𝑝𝑛−2𝑞 + ⋯ + 𝑎1𝑝𝑞𝑛−2 + 𝑎1𝑞𝑛−1 = 0  

Then, as all the terms from 𝑎𝑛−1𝑝𝑛−1 onwards are integers, it 

follows that 
𝑝𝑛

𝑞
 is also an integer, and hence 𝑞 = 1 (as 𝑝 & 𝑞 have  

no common factor greater than 1), and the root is an integer. 

 

(I) Hyperbolic Functions 

𝑎𝑟𝑠𝑖𝑛ℎ𝑥 = ln(𝑥 + √𝑥2 + 1) ; 𝑎𝑟𝑐𝑜𝑠ℎ𝑥 = ln(𝑥 + √𝑥2 − 1)  

Note that 𝑐𝑜𝑠ℎ𝑦 = 𝑥 ⇒ 𝑦 = ±𝑎𝑟𝑐𝑜𝑠ℎ𝑥 = ± ln(𝑥 + √𝑥2 − 1), 

which can be shown to equal ln(𝑥 ± √𝑥2 − 1) 

[though note that −ln (𝑎 + 𝑏) ≠ ln (𝑎 − 𝑏) in general] 


