Contents

(A) Tests for divisibility
(B) Weak and Strong Induction
(C) Series
(D) Factorisations
(E) Integer solutions
(F) Trinomial expansions
(G) Equating coefficients
(H) Polynomials
(I) Hyperbolic Functions

(A) Tests for divisibility

(1) If the sum of the digits of a number is a multiple of 3 , then the number itself is a multiple of 3 ; and similarly for 9 .
(2) $11 \times 325847=3584317$
and $3-5+8-4+3-1+7=11$, which is a multiple of 11
This is true in all cases: If $a-b+c-d+\cdots-z$ is a multiple of 11 , then $a b c d \ldots z$ is a multiple of 11 .
[and also for $a-b+c-d+\cdots+y$]

(B) Weak \& Strong Induction

[$P(k)$ is the proposition that a particular result is true for $n=k]$ 'Weak' induction is just the ordinary method 'Strong' induction is where we show that if $P(k-m)$, $P(k-m+1), \ldots P(k)$ are correct, then $P(k+1)$ will be correct. We then have to establish that $P(1), P(2), \ldots P(m+1)$ are correct. (Weak induction corresponds to $m=0$.)

Example: g_{n} is defined recursively as $\left(n^{3}-3 n^{2}+2 n\right) g_{n-3}$ for $n \geq 4$, and $g_{1}=1, g_{2}=2, g_{3}=6$

Show that $g_{n}=n$! for $n \geq 1$

Solution

Assume that the result is true for $n=k-2, k-1 \& k$.
Then $g_{k+1}=\left((k+1)^{3}-3(k+1)^{2}+2(k+1)\right) g_{k-2}$
$=(k+1)\left(k^{2}+2 k+1-3 k-3+2\right)(k-2)!$
$=(k+1)\left(k^{2}-k\right)(k-2)$!
$=(k+1) k(k-1)(k-2)$!
$=(k+1)$!
So that the result is true for $n=k+1$ if it is true for
$n=k-2, k-1 \& k$.
As it is true for $n=1,2 \& 3$, it is therefore true for $n=4,5, \ldots$, and hence, by the principle of induction, it is true for all positive integers.

(C) Series

(1) $\sum_{r=1}^{n} r=1+2+3+\cdots+n=\frac{1}{2} n(n+1)$
[Informal proof: The average size of the terms being added is $\frac{1}{2}(1+n)$, and there are n terms.]
(2) See STEP 2008, P3, Q2 for a method to obtain $S_{k}(n)=\sum_{r=1}^{n} r^{k}$ for any n.
For example, $S_{4}(n)=\frac{1}{30} n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)$
(3) Taylor \& Maclaurin expansions
(i) Maclaurin: $f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\cdots$
(ii) Taylor I: $f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\cdots$
(iii) Taylor II: $f(x+a)=f(a)+x f^{\prime}(a)+\frac{x^{2}}{2!} f^{\prime \prime}(a)+\cdots$
[$x=0$ gives the Maclaurin expansion]

(D) Factorisations

(1)(i) $x^{2}-y^{2}=(x+y)(x-y)$
(ii) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
[Let $f(x)=x^{3}-y^{3}$. Then $f(y)=0$, and so $x-y$ is a factor of $x^{3}-y^{3}$, by the Factor Theorem.]
$x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
(iii) $x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+x y^{n-2}+y^{n-1}\right)$
or $(x+y)\left(x^{n-1}-x^{n-2} y+\cdots+x y^{n-2}-y^{n-1}\right)$, if n is even $x^{n}+y^{n}=(x+y)\left(x^{n-1}-x^{n-2} y+\cdots-x y^{n-2}+y^{n-1}\right)$ if n is odd
(2) Let $f(n)$ be the number of factors of n (including 1).

If $n=p q$, where $p \& q$ have no common factors (other than 1), then $f(n)=f(p) f(q)$.
[eg $100=2^{2} \times 5^{2}$; factors are obtained from
$\{1,2,4\}$ with $\{1,5,25\}$, giving a total of $3 \times 3=9$ factors:
$1,5,25,2,10,50,4,20,100$]

(E) Integer solutions

eg $x y-8 x+6 y=90$
can be rearranged to $(x+6)(y-8)=42$
(F) Trinomial expansions
(i) $(a+b+c)^{2}=\left(a^{2}+b^{2}+c^{2}\right)+2(a b+a c+b c)$
(ii) $(a+b+c)^{3}=\left(a^{3}+b^{3}+c^{3}\right)$
$+3\left(a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b\right)$
$+6 a b c$
(iii) $(a+b+c)^{4}=\left(a^{4}+b^{4}+c^{4}\right)$
$+4\left(a^{3} b+a^{3} c+b^{3} a+b^{3} c+c^{3} a+c^{3} b\right)$
$+6\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right)+12\left(a^{2} b c+b^{2} a c+c^{2} a b\right)$
(iv) $(a+b+c)^{n}=\sum_{\substack{i, j, k \\(i+j+k=n)}}\binom{n}{i, j, k} a^{i} b^{j} c^{k}$,
where $\binom{n}{i, j, k}=\frac{n!}{i!j!k!}$

(G) Equating coefficients

Example: To divide $f(x)=x^{3}+x^{2}-11 x+10$ by $x-2$
First of all, $f(2)=8+4-22+10=0$, so that there is no remainder.

Then $x^{3}+x^{2}-11 x+10=(x-2)\left(x^{2}+a x-5\right)$
Equating coefficients of $x^{2}: 1=a-2$, so that $a=3$
(Check: Equating coefficients of x : $-11=-5-2 a$, so that $a=3$)
This method is usually quicker than long division.

(H) Polynomials

(1) Integer roots

Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$
where $n \geq 2$ and the a_{i} are integers, with $a_{0} \neq 0$.
Then it can be shown that any rational root of the equation $f(x)=0$ will be an integer.

Proof

Suppose that there is a rational root $\frac{p}{q}$, where $p \& q$ are integers with no common factor greater than 1 and $q>0$.

Then $\left(\frac{p}{q}\right)^{n}+a_{n-1}\left(\frac{p}{q}\right)^{n-1}+\cdots+a_{2}\left(\frac{p}{q}\right)^{2}+a_{1}\left(\frac{p}{q}\right)+a_{0}=0$ and, multiplying by q^{n-1} :
$\frac{p^{n}}{q}+a_{n-1} p^{n-1}+a_{n-2} p^{n-2} q+\cdots+a_{1} p q^{n-2}+a_{1} q^{n-1}=0$
Then, as all the terms from $a_{n-1} p^{n-1}$ onwards are integers, it follows that $\frac{p^{n}}{q}$ is also an integer, and hence $q=1$ (as $p \& q$ have no common factor greater than 1), and the root is an integer.

(I) Hyperbolic Functions

$\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right) ; \operatorname{arcosh} x=\ln \left(x+\sqrt{x^{2}-1}\right)$
Note that coshy $=x \Rightarrow y= \pm \operatorname{arcosh} x= \pm \ln \left(x+\sqrt{x^{2}-1}\right)$,
which can be shown to equal $\ln \left(x \pm \sqrt{x^{2}-1}\right)$
[though note that $-\ln (a+b) \neq \ln (a-b)$ in general]

