Roots of Polynomial Equations - Exercises (Solutions)

(6 pages; 14/01/20)

(1#) If the quadratic equation $2x^2 + 5x - 9 = 0$ has roots α and β , find the quadratic equation which has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$

Solution

Method 1

 $\alpha + \beta = -\frac{5}{2}$ and $\alpha\beta = -\frac{9}{2}$ Let the new equation be $x^2 + bx + c = 0$ Then $\frac{1}{\alpha} + \frac{1}{\beta} = -b$ and $\frac{1}{\alpha} \cdot \frac{1}{\beta} = c$, so that $b = \frac{-(\alpha + \beta)}{\alpha\beta} = -\frac{5}{9}$ and $c = -\frac{2}{9}$ and the new equation is $x^2 - \frac{5x}{9} - \frac{2}{9} = 0$ or $9x^2 - 5x - 2 = 0$ [Note that, if written as $-9x^2 + 5x + 2 = 0$, then the coefficients

of the original equation are reversed.]

Method 2

Let
$$u = \frac{1}{x}$$
, so that $x = \frac{1}{u}$
Then $2\left(\frac{1}{u}\right)^2 + \frac{5}{u} - 9 = 0$
and $2 + 5u - 9u^2 = 0$ or $9u^2 - 5u - 2 = 0$

(2#) If the roots of the equation $x^2 + x - 13 = 0$ are $\alpha \& \beta$, find the equation with roots $2\alpha + 3\beta \& 3\alpha + 2\beta$

Solution

Let the new equation be
$$x^2 + bx + c = 0$$

Then $-b = (2\alpha + 3\beta + 3\alpha + 2\beta) = 5(\alpha + \beta) = 5(-1)$
And $c = (2\alpha + 3\beta)(3\alpha + 2\beta) = 6(\alpha^2 + \beta^2) + 13\alpha\beta$
 $= 6\{(\alpha + \beta)^2 - 2\alpha\beta\} + 13\alpha\beta = 6(\alpha + \beta)^2 + \alpha\beta$
 $= 6(-1)^2 - 13 = -7$

Hence the new equation is $x^2 + 5x - 7 = 0$

(3#) If the roots of the equation $x^3 - 14x^2 + 56x - 64 = 0$ are α , $\beta \& \gamma$, find the equation with roots $\frac{1}{\alpha}$, $\frac{1}{\beta} \& \frac{1}{\gamma}$

Solution

Substitution method: Let $u = \frac{1}{x}$, so that $x = \frac{1}{u}$ Then $\left(\frac{1}{u}\right)^3 - 14\left(\frac{1}{u}\right)^2 + 56\left(\frac{1}{u}\right) - 64 = 0$ and $1 - 14u + 56u^2 - 64u^3 = 0$ or $64u^3 - 56u^2 + 14u - 1 = 0$ (coefficients are reversed) (4***) Find the roots of the equation $x^3 - 14x^2 + 56x - 64 = 0$, given that they form a geometric progression.

Solution

Let the roots be $\frac{\alpha}{r}$, $\alpha \& r\alpha$ Then $\frac{\alpha}{r} \cdot \alpha \cdot r\alpha = 64$, so that $\alpha = 4$ Also $\frac{\alpha}{r} + \alpha + r\alpha = 14$, so that $\frac{1}{r} + 1 + r = \frac{7}{2}$ Then $2(1 + r + r^2) = 7r$ and $2r^2 - 5r + 2 = 0$ Hence (2r - 1)(r - 2) = 0 and so $r = \frac{1}{2}$ or 2 Thus the roots are 2, 4 and 8.

(5***) If the roots of the equation $x^5 + bx^4 + cx^3 + dx^2 + ex + f = 0$ are 5 consecutive positive integers, find expressions for these roots.

Solution

Let the roots be $\alpha - 2$, $\alpha - 1$, α , $\alpha + 1 \& \alpha + 2$

Then, summing these, $5\alpha = -b$

and hence the roots are $-(\frac{b}{5}+2)$, $-(\frac{b}{5}+1)$, $-\frac{b}{5}$, $1-\frac{b}{5}$ & $2-\frac{b}{5}$

(6#) If α , β and γ are the roots of the equation

 $x^3 - 14x^2 + 56x - 64 = 0,$

find the equation with roots $\alpha\beta$, $\alpha\gamma$ and $\beta\gamma$.

Solution

Let $u = \alpha \beta = \frac{\alpha \beta \gamma}{\gamma} = \frac{64}{\gamma}$ Then $\gamma = \frac{64}{u}$ satisfies the original equation Similarly for $u = \alpha \gamma$ and $u = \beta \gamma$.

Thus the required equation is

$$\left(\frac{64}{u}\right)^3 - 14\left(\frac{64}{u}\right)^2 + 56\left(\frac{64}{u}\right) - 64 = 0,$$

giving $4096 - 896u + 56u^2 - u^3 = 0$
or $u^3 - 56u^2 + 896u - 4096 = 0$

(7##) If α , β and γ are the roots of the equation $x^3 - 2x^2 - 4x + 5 = 0$,

find the equation with roots $\alpha + \beta \gamma$, $\beta + \alpha \gamma$ and $\gamma + \alpha \beta$.

Solution

Let the new equation be $x^3 + bx^2 + cx + d = 0$

Then
$$b = -(\alpha + \beta\gamma + \beta + \alpha\gamma + \gamma + \alpha\beta)$$

= $-\sum \alpha - \sum \alpha\beta = -2 - (-4) = 2$

$$c = (\alpha + \beta \gamma) (\beta + \alpha \gamma) + (\alpha + \beta \gamma) (\gamma + \alpha \beta) + (\beta + \alpha \gamma) (\gamma + \alpha \beta)$$
$$= (\alpha \beta + \alpha^2 \gamma + \beta^2 \gamma + \alpha \beta \gamma^2) + \dots$$

[By symmetry, this contains all the types of terms appearing in the full expansion, and there are 3(4) = 12 terms.]

 $= \sum \alpha \beta + \sum \alpha^2 \beta + \sum \alpha \beta \gamma^2$ [As a check, this contains 3 + 6 + 3 = 12 terms] Thus $c = (-4) + \sum \alpha^2 \beta + \alpha \beta \gamma \sum \alpha$ $(-4) + \sum \alpha^2 \beta + (-5)(2) = -14 + \sum \alpha^2 \beta$ (A) [$\sum \alpha^2 \beta$ to be found shortly] And $d = -(\alpha + \beta \gamma)(\beta + \alpha \gamma)(\gamma + \alpha \beta)$ [this will give $2^3 = 8$ terms] $= -(\alpha \beta \gamma + (\sum \alpha^2 \beta^2) + \alpha^2 \beta^2 \gamma^2 + \sum \alpha^3 \beta \gamma)$

[This can be obtained by performing the expansion, but only noting the types of term (some of which are repeated).]

$$[1 + 3 + 1 + 3 = 8 \text{ terms}]$$

Thus $d = -(-5) - \sum \alpha^2 \beta^2 - (-5)^2 - \alpha \beta \gamma \sum \alpha^2$
 $= -20 - \sum \alpha^2 \beta^2 - (-5) \sum \alpha^2$ (B)

So we need to find $\sum \alpha^2$, $\sum \alpha^2 \beta^2 \& \sum \alpha^2 \beta$

First of all, consider $(\alpha + \beta + \gamma)^2 = \sum \alpha^2 + 2 \sum \alpha \beta$, so that $\sum \alpha^2 = 2^2 - 2(-4) = 12$

We can also consider $(\alpha\beta + \alpha\gamma + \beta\gamma)^2 = \sum (\alpha\beta)^2 + 2\sum \alpha^2\beta\gamma$ [giving 3 + 2(3) = 9 terms] so that $\sum \alpha^2\beta^2 = (-4)^2 - 2\alpha\beta\gamma\sum\alpha = 16 - 2(-5)(2) = 36$

fmng.uk

Then $(\alpha + \beta + \gamma)(\alpha\beta + \alpha\gamma + \beta\gamma) = (\sum \alpha^2 \beta) + 3\alpha\beta\gamma$ [3(2) + 3 = 9 terms] so that $\sum \alpha^2 \beta = 2(-4) - 3(-5) = 7$

Hence, from (A), $c = -14 + \sum \alpha^2 \beta = -14 + 7 = -7$ and, from (B),

 $d = -20 - \sum \alpha^2 \beta^2 - (-5) \sum \alpha^2 = -20 - 36 + 5(12) = 4$

And so the required equation is $x^3 + 2x^2 - 7x + 4 = 0$

[In this example we can use the Factor theorem to see that α (*say*) = 1, and that β , $\gamma = \frac{1 \pm \sqrt{21}}{2}$, which leads to $\alpha + \beta \gamma$ etc being -4, 1 & 1, enabling the new equation to be confirmed. In general of course, we may not be able to find a root by the Factor theorem.]