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Rolling Wheels  (12 pages; 14/11/18) 

See also STEP 2018, P2, Q11 
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(A) Speed relative to the ground - Part 1 

Assume that a light hoop (ie of negligible mass) is rolling (without 

slipping) at a constant speed 𝑣 on horizontal ground. How fast is 

the point P on the hoop (in Figure 1) moving relative to the 

ground (a) when it is touching the ground, and (b) when it is at 

the top? 

Suppose that the hoop is rotating in a clockwise sense and has 

radius 𝑎. Let 𝜃 be as in the diagram. 

 

 

Figure 1 
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As P leaves the ground, it moves round to the left, and has speed 

a�̇� along the circumference of the hoop, relative to the centre of 

the hoop.  [The arc length travelled as the angle increases by 𝜃 rad 

is 𝑎𝜃, and the tangential speed is 
𝑑

𝑑𝑡
(𝑎𝜃) = 𝑎�̇� (where �̇�  ≡

𝑑𝜃

𝑑𝑡
) ]  

The ground that the hoop covers is equal to the distance that P 

moves along the circumference, and hence the centre of the hoop 

is also moving with speed a�̇� (but to the right, and relative to the 

ground), so that  𝑣 = 𝑎�̇�. 

The motion of P relative to the ground has two components: its 

motion relative to the centre of the hoop, and the motion of the 

centre of the hoop relative to the ground. When P is touching the 

ground, its  speed relative to the ground is therefore 

−𝑎�̇� + 𝑎�̇� = 0 (if motion to the right is considered to be positive); 

ie P is stationary!  

At the top, P has speed  𝑎�̇� + 𝑎�̇� = 2𝑎�̇� = 𝑣, relative to the 

ground. 

The fact that the hoop is rolling rather than slipping means that it 

is effectively toppling continually about the point of contact with 

the ground. (Consider a circular star-like structure, with a large 

number of limbs.) 

 

(B) Speed relative to the ground - Part 2 

For the same hoop, how fast is the general point P (in Figure 2) 

moving relative to the ground – in terms of θ? And (separately) in 

terms of ℎ (the height above the ground)?  

Let this speed be 𝑣𝑃 (in the direction indicated in Figure 2). 
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Figure 2 

 

We can use the fact that the point of contact of the hoop with the 

ground is the ‘instantaneous centre of rotation’ of the hoop: every 

point on the hoop is (instantaneously) rotating about C with the 

same angular speed, ω say. 

Every point is therefore instantaneously moving at right angles to 

the line joining it to C; PC in the case of the point P. 

The point at the top of the hoop has speed 2𝑣 relative to the 

ground (from Part 1), so that  ω = 
2𝑣

2𝑎
=

𝑣

𝑎
    (1)  

[since, in general, the tangential speed 𝑣 and the angular speed 𝜔 

are related by 𝑣 = 𝜔𝑟, where 𝑟 is the radius of the circular path 

being followed] 

For P,  𝜔 =
𝑣𝑃

𝑃𝐶
  (2) 

As the triangle OPC is isosceles , 𝑃𝐶 = 2𝑎𝑐𝑜𝑠𝜃 

Hence, from (1) & (2), 𝑣𝑃 =
𝑣

𝑎
𝑃𝐶 = 2𝑣𝑐𝑜𝑠𝜃  

Also, ℎ = 𝑃𝐶𝑐𝑜𝑠𝜃 (drawing a line from P to the ground, parallel to 

OC) = 2𝑎𝑐𝑜𝑠2𝜃,  so that 𝑣𝑃 = 2𝑣√
ℎ

2𝑎
= 𝑣√

2ℎ

𝑎
 

Note that both results agree with Part 1 when P is at the top or 

bottom of the hoop. 
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Note also that, in Part 1, the angular speed of P about the centre O 

was 𝜔 =
𝑣

𝑎
= �̇�; ie the angular speed about the instantaneous 

centre of rotation is the same as the angular speed about the 

centre. 

 

(C) Speed relative to the ground - Part 3 

Alternative method: 

The velocity of point P has two components -  translational and 

rotational. 

The translational component is horizontal and equal to 𝑣 (the 

same as the centre of the hoop). 

The rotational component is perpendicular to OP and is equal to   

𝑎�̇� = 𝑣 (also). 

 

This immediately gives the speed relative to the ground when P is 

at the top or bottom. 

For general P (referring to Figure 3): 

 

 

Figure 3 
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The rotational component can itself be resolved into horizontal 

and vertical components, as follows: 

𝜙 = 𝜋 − ∠𝐶𝑂𝑃 = 𝜋 − (𝜋 − 2𝜃) = 2𝜃  

(referring to the isosceles triangle (and the point C) in Figure 2) 

Then its vertical component = 𝑣𝑐𝑜𝑠 (
𝜋

2
− 𝜙) = 𝑣𝑠𝑖𝑛𝜙 = 𝑣𝑠𝑖𝑛(2𝜃) 

and its horizontal component  = 𝑣𝑐𝑜𝑠(2𝜃) 

Adding in the translational component, gives: 

total horizontal component = 𝑣(1 + 𝑐𝑜𝑠2𝜃) 

and total vertical component = 𝑣𝑠𝑖𝑛2𝜃, 

so that the magnitude of the velocity of P is: 

 𝑣√(1 + 𝑐𝑜𝑠2𝜃)2 + 𝑠𝑖𝑛22𝜃 

= 𝑣√(1 + 𝑐𝑜𝑠2𝜃 −  𝑠𝑖𝑛2𝜃)2 + 4𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃  

= 𝑣√(2𝑐𝑜𝑠2𝜃)2 + 4𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃  

= 𝑣√4𝑐𝑜𝑠4𝜃 + 4𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃  

= 𝑣√4𝑐𝑜𝑠2𝜃(𝑐𝑜𝑠2𝜃 +  𝑠𝑖𝑛2𝜃)  

= 2𝑣𝑐𝑜𝑠𝜃,  as before 

 

(D) Accelerating wheel  

Consider a stationary car that is suddenly accelerated. If the 

acceleration is not too great and the road surface is sufficiently 

rough, then friction will be able to prevent the motion of the part 

of the wheel that is in contact with the road. This causes rolling, 

with the effect that an adjacent part of the wheel  now becomes in 

contact with the road. As seen in (A), the part of the wheel that is 
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in contact with the road is momentarily at rest relative to the 

ground (the net effect of the motion forwards of the car and the 

opposite rotation of the wheel). Thus the friction involved here is 

static friction (with coefficient 𝜇𝑠).  

If there is any skidding of the wheels (ie if the acceleration or 

braking is too great, or if the surface is not rough enough), then 

there will be dynamic (or kinetic) friction at the point of contact 

(with coefficient 𝜇𝑘), instead of static friction (ie as if a block is 

sliding along a surface). 

The direction of friction depends on whether the car is 

accelerating or decelerating, and (surprisingly perhaps) whether 

it is being pushed or moves as a result of the engine turning the 

axle. 

Situation A: Force through the centre of mass causing acceleration 

(eg a car being pushed, or a horse pulling a cart) 

[wheel moving to the right] 

Figure 4 

 

The frictional force is towards the left because it opposes the 

attempted motion towards the right (consider the situation 
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where the wheel is initially stationary, and then pushed; ie the 

situation is similar to a block being pushed on a table). 

The net forwards force is 𝐹 − 𝑅 − 𝑓. The frictional force 𝑓 can be 

thought of as converting linear acceleration into angular 

acceleration. No energy is lost due to this friction, because the 

point of contact is stationary (and therefore no work is done). 

Resistances to motion (totalling R in the previous diagram): 

(a) air resistance 

(b) friction at the axle 

(c) due to the way that the tyre compresses - this is often referred 

to as ‘rolling friction’ (equivalent to 𝜇 of about 0.01) – it isn’t 

really friction though (a torque is created, producing a negative 

angular acceleration). 

Note that the size of the equivalent coefficient of friction is very 

small compared with the usual values; hence the advantage of 

rolling wheels as a means of transport! 

Situation A is revisited, after situation D, once further theory has 

been covered. 
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Situation B: Car accelerates via a clockwise torque (ie axle turning 

due to a force applied by the engine) 

[wheel moving to the right] 

 

Consider the part of the wheel that is in contact with the ground. 

This experiences a force to the left, as the axle rotates. 

Friction opposes this, and is therefore to the right, preventing the 

contact point from moving, and hence causes rolling. (Consider a 

person walking across ice, where the feet have a tendency to slip 

backwards (ie to the left if moving to the right), if friction is 

overcome; so friction acts to the right.) 

The acceleration of the wheel has two components: translational 

and rotational. The translational acceleration is due to the 

combined effect of friction and the other resistance forces; ie not 

the driving force of the engine - although this gives rise to the 

friction. 

If the rotational accelerating force exceeds the limiting frictional 

force, then the wheel slips, with the contact point moving to the 

left.  
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Example 

With  𝜇𝑠 = 0.6, and ignoring resistance to motion: 

The forwards force on the car is the total frictional force. 

The maximum frictional force per wheel is 𝜇 (
𝑚𝑔

4
), and the total 

maximum frictional force for a rear-wheel drive car is therefore 

2𝜇 (
𝑚𝑔

4
) 

Then  2𝜇 (
𝑚𝑔

4
) = 𝑚𝑎𝑚𝑎𝑥, 

and the maximum acceleration of the car is 

𝜇𝑔

2
=

0.6(9.8)

2
= 2.94𝑚𝑠−1  

 

 

Situation C: Car brakes via an anti-clockwise torque (using brake 

pads) 
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This tends to make the part of the wheel that is in contact with the 

ground move to the right. Hence friction acts to the left (as it 

opposes attempted motion). 

If limiting friction is exceeded, then there is some skidding  - with 

the contact point moving to the right relative to the ground 

(though rotation can continue as well). 

Where the car brakes without skidding, wheel rotation can be 

slowed down in a controlled manner, dependent on the 

coefficient of static friction; whereas with skidding the 

deceleration depends on the coefficient of dynamic friction.  

For a car on a wet surface, the dynamic coefficient of friction, 𝜇𝑘 

may be 0.4, compared to the static coefficient of friction, 𝜇𝑠 of 

perhaps 0.7. Hence, a braking car slows down more rapidly when 

rolling, rather than skidding. 

 

Situation D: Wheel rolling down a slope 

 

 

 

 

 

 

 

This is essentially the same as Situation A: instead of the wheel 

being pushed (or pulled), it is subject to the component of the 

weight down the slope (𝑊𝑠𝑖𝑛𝜃). As in Situation A, the friction 
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opposes the attempted motion, which is down the slope. So 

friction acts up the slope. 

However, it may be the case that the wheel slips instead of rolling. 

Consider the angular equivalent of Newton's 2nd law: 

𝜏 = 𝐼𝛼, 

where 𝜏 (torque) = 𝑓𝑟,  and 𝑟 is the radius of the wheel; 

𝐼(moment of inertia of the wheel) =
1

2
𝑚𝑟2 , and 𝑚 is the mass of 

the wheel; 

𝛼 (angular acceleration) =
𝑎

𝑟
 , and 𝑎 is the linear acceleration of 

the wheel down the slope [in the same way that 𝑣 = 𝑎�̇� in (A), so 

that  �̇� =
𝑣

𝑎
] 

 

So, if rolling takes place,  𝑓𝑟 =
1

2
𝑚𝑟2 (

𝑎

𝑟
) ⇒ 𝑓 =

1

2
𝑚𝑎  (1) 

 

Also, resolving forces down the slope (with 𝑊 = 𝑚𝑔), 

𝑚𝑔𝑠𝑖𝑛𝜃 − 𝑓 = 𝑚𝑎  (2) 

and  𝑓 ≤ 𝜇𝑚𝑔𝑐𝑜𝑠𝜃  (3) 

Thus, if rolling takes place, (1) & (2) give: 

𝑚𝑔𝑠𝑖𝑛𝜃 − 𝑓 = 𝑚(
2𝑓

𝑚
)   

⇒ 𝑓 =
1

3
𝑚𝑔𝑠𝑖𝑛𝜃  

and (3) ⇒
1

3
𝑚𝑔𝑠𝑖𝑛𝜃 ≤ 𝜇𝑚𝑔𝑐𝑜𝑠𝜃 ⇒ 𝜇 ≥

1

3
𝑡𝑎𝑛𝜃     

For example, when 𝜃 = 30°, 𝜇 ≥
1

3
(

1

√3
) = 0.192 (3sf) 
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Also from (1) & (2), 𝑚𝑔𝑠𝑖𝑛𝜃 −
1

2
𝑚𝑎  = 𝑚𝑎, 

so that 𝑎 =
2

3
𝑔𝑠𝑖𝑛𝜃 (when there is rolling). 

 

Situation A revisited, for a single ball being pushed along 

As in situation D, 𝑓 =
1

2
𝑚𝑎  when there is rolling, and so the 

maximum acceleration possible with rolling is given by: 

𝑎𝑚𝑎𝑥 =
2𝑓𝑚𝑎𝑥

𝑚
=

2𝜇𝑚𝑔

𝑚
= 2𝜇𝑔  

 

(E) Wheel rolling at constant speed 

If a wheel is rolling at constant speed, then there is no friction at 

the contact point: As there is no angular acceleration, there is no 

force for the friction to oppose. Also, ignoring resistance forces, 

any friction would be applying a translational force to the wheel 

(and this cannot be the case, as it is moving with constant speed). 


