Quadratics (4 pages; 5/6/23)

Contents

(A) Quadratic curves
(B) Factorising $a x^{2}+b x+c$

(A) Quadratic curves

Example: $y=x^{2}-2 x-3$
$x^{2}-2 x-3=(x+1)(x-3)$
Also $x^{2}-2 x-3=(x-1)^{2}-4$
The minimum point of $(1,-4)$ lies on the line of symmetry of the curve, which is equidistant from the two roots of $x^{2}-2 x-3=0$: $-1 \& 3$.

Also, from the quadratic formula (which is itself derived by completing the square on $a x^{2}+b x+c$):
$x=\frac{2 \pm \sqrt{4+12}}{2}=1 \pm 2$
Thus the roots of $x^{2}-2 x-3=0$ lie the same distance either side of the line of symmetry of the curve.
(B) Factorising $a x^{2}+b x+c$
(i) If unsure whether the expression will factorise at all, examine $b^{2}-4 a c$. If it is not a perfect square, then no factorisation involving integers will be possible.
(ii) If a and/or c are prime numbers, then the factorisation can often be carried out 'by inspection'; ie there will only be a few possibilities to try out.
Example: $5 x^{2}-34 x-7$
First of all, $b^{2}-4 a c=1156+4(5)(7)=1296=36^{2}$, and an integer factorisation is possible.

The factorisation has to be of the form:
$(5 x+p)(x+q)$
where either $p=7, q=-1$ or $p=-1, q=7$
or $p=1, q=-7$ or $p=-7, q=1$
Clearly, only $q=-7$ is likely to give rise to the $-34 x$ (considering the term $5 x q$), so the factorisation must be $(5 x+1)(x-7)$
(iii) Where the factorisation is less easy to arrive at, and as an alternative to using the quadratic formula, the following procedure can be applied:

In general, let $a x^{2}+b x+c=a x^{2}+D x+E x+c$
such that $D+E=b$ and $D E=a c$
This is the extension of the familiar method when $a=1$.
If an integer factorisation exists, then suitable $D \& E$ can be found, and $a x^{2}+D x$ and $E x+c$ will always share a common factor. See below for a proof.

Example: $f(x)=6 x^{2}+x-12$
We need to find $D \& E$ such that $D+E=1$ and $D E=-72$
$D=9 \& E=-8$ satisfy this
Then $f(x)=6 x^{2}+9 x-8 x-12$
$=3 x(2 x+3)-4(2 x+3)$
$=(3 x-4)(2 x+3)$
Alternatively, $f(x)=6 x^{2}-8 x+9 x-12$
$=2 x(3 x-4)+3(3 x-4)$
$=(2 x+3)(3 x-4)$

Note: In more awkward cases, it is possible to home in on the correct values of $D \& E$ by first of all limiting our choices to those where (in this case) $D E=-72$, and at each stage observing how far out $D+E$ is, and whether the factors of -72 need to be closer together or further apart.

Proof

Suppose that we can find $D \& E$ such that $D+E=b$ and $D E=a c$

We are trying to factorise $a x^{2}+D x$ and $E x+c$
So let $a=p m$ and $D=p n$, where p is the HCF of $a \& D$
Similarly let $E=q u$ and $c=q v$, where q is the HCF of $E \& c$.
Then $a x^{2}+D x+E x+c$ can be written as
$p x(m x+n)+q(u x+v)$
and we need to show that $m=u \& n=v$.
Now $D E=a c$, so that $p n q u=p m q v$, and hence $n u=m v$ (provided that $p \& q$ are non-zero, which is the case as long as $a \& c$ are non-zero).

Now, $m \& n$ have no factors in common (as p is the HCF of $a \& D$). Hence the factors of n must be contained within v (since $n u=m v)$, and so $n \leq v$.

Also, $u \& v$ have no factors in common (as q is the HCF of $E \& c$). Hence the factors of v must be contained within n (since $n u=m v)$, and so $v \leq n$.

As $n \leq v$ and $v \leq n$, it follows that $n=v$, and hence $m=u$ (since $n u=m v)$, as required.

