Quadratics - Q1 [Practice/E] (16/6/21)

Find the turning points of the following quadratic functions (without differentiating)
(i) $y=x^{2}+x-2$
(ii) $s=10 t-5 t^{2}$
(iii) $s=1+10 t-5 t^{2}$

Solution

(i) Obtain roots from $x^{2}+x-2=(x+2)(x-1)$

Then minimum point from either $x=\frac{1}{2}(-2+1)$, or completing the square: $x^{2}+x-2=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}-2$, to give $\left(-\frac{1}{2},-\frac{9}{4}\right)$.
(ii) Roots of 0 \& 2; so maximum point when $t=1$, to give (1,5); or completing the square:
$10 t-5 t^{2}=-5\left(t^{2}-2 t\right)=-5(t-1)^{2}+5$
(iii) Alternative to above approach: maximum point when $t=1$, as graph from (ii) is translated by $\binom{0}{1}$, to give $(1,6)$.

