Pure - Miscellaneous: Exercises (Sol'ns)(7 pages; 17/1/20)

Contents

- (A) Indices
- (B) Partial Fractions
- (C) Recurrence relations
- (Z) Miscellaneous

(A) Indices

(1*) (i) Does $\sqrt{4}$ equal 2 or ± 2 ? (ii) Simplify $\sqrt{x^2}$

Solution

(i) By convention, 2 (consider the \pm in the quadratic formula).

(ii) |*x*|

(2*) Simplify
$$\left(1 + \left(1 + 2^{-\frac{1}{2}}\right)^{-1}\right)^{-1}$$

Solution

$$\left(1 + \left(1 + 2^{-\frac{1}{2}} \right)^{-1} \right)^{-1} = \frac{1}{1 + \frac{1}{1 + \frac{1}{\sqrt{2}}}} = \frac{1}{1 + \frac{\sqrt{2}}{\sqrt{2} + 1}} = \frac{\sqrt{2} + 1}{\sqrt{2} + 1 + \sqrt{2}} = \frac{\sqrt{2} + 1}{2\sqrt{2} + 1} = \frac{(\sqrt{2} + 1)(2\sqrt{2} - 1)}{(2\sqrt{2} + 1)(2\sqrt{2} - 1)} = \frac{4 - \sqrt{2} + 2\sqrt{2} - 1}{8 - 1} = \frac{3 + \sqrt{2}}{7}$$

(B) Partial Fractions

(1***) Express $\frac{1}{(1-x^2)^2}$ in terms of partial fractions

Solution

$$\frac{1}{(1-x^2)^2} = \frac{1}{(1-x)^2(1+x)^2} = \frac{A}{1-x} + \frac{B}{(1-x)^2} + \frac{C}{1+x} + \frac{D}{(1+x)^2}$$

so that $1 = A(1-x)(1+x)^2 + B(1+x)^2 + C(1+x)(1-x)^2 + D(1-x)^2$
Then $x = 1 \Rightarrow 1 = 4B \Rightarrow B = \frac{1}{4}$
 $x = -1 \Rightarrow 1 = 4D \Rightarrow D = \frac{1}{4}$
 $x = 0 \Rightarrow 1 = A + B + C + D \Rightarrow A + C = \frac{1}{2}$
Equating coefficients of $x^3 \Rightarrow 0 = -A + C$
Hence $A = C = \frac{1}{4}$
and $\frac{1}{(1-x^2)^2} = \frac{1}{4(1-x)} + \frac{1}{4(1-x)^2} + \frac{1}{4(1+x)} + \frac{1}{4(1+x)^2}$

(C) Recurrence relations

(1#) Consider the sequence defined by $u_n = au_{n-1} + b$,

where a & b are real constants, and u_0 is given.

(i) What familiar sequences are special cases of this sequence?Solution

Setting a = 1 gives an arithmetic sequence.

Setting b = 0 gives a geometric sequence.

(ii) Define a new sequence by $v_n = u_n + c$

For what value of *c*, in terms of *a* & *b*, will v_n be a geometric sequence?

For what value of *a* does this not work?

Solution

 $v_{n-1} = u_{n-1} + c$, and hence

$$u_n = au_{n-1} + b \Rightarrow v_n - c = a(v_{n-1} - c) + b$$

 $\Rightarrow v_n = av_{n-1} + b + c(1-a)$

For v_n to be a geometric sequence, we want b + c(1 - a) = 0,

so that $c = \frac{-b}{1-a} = \frac{b}{a-1}$, provided that $a \neq 1$

When a = 1, u_n , and hence v_n also, are arithmetic sequences.

(iii) If $u_n = 2u_{n-1} + 3$, and $u_0 = 4$, find a formula for u_n in terms of n

Solution

From (ii), $c = \frac{3}{2-1} = 3$ and $v_n = 2v_{n-1}$ Then $v_n = v_0(2^n)$ and $v_n = u_n + 3$, so that $u_n + 3 = (u_0 + 3)(2^n)$ and $\therefore u_n = 7(2^n) - 3$ (and this can be checked by comparing with $u_n = 2u_{n-1} + 3$, and $u_0 = 4$)

(iv) Find a similar formula for $u_n = au_{n-1} + b$, where u_0 is given.

Solution

From (ii), $c = \frac{b}{a-1}$ and $v_n = av_{n-1}$ Then $v_n = v_0(a^n)$ and $v_n = u_n + c$, so that $u_n + c = (u_0 + c)(a^n)$ and $\therefore u_n = (u_0 + c)(a^n) - c = \left(u_0 + \frac{b}{a-1}\right)(a^n) - \frac{b}{a-1}$

(v) Under what conditions will u_n be constant? Give a non-trivial example.

Solution

Either a = 1 & b = 0

Or a = 0 and $u_0 = b$

Or $u_0 + \frac{b}{a-1} = 0$; ie $u_0 = \frac{b}{1-a}$

For example, $u_n = 2u_{n-1} - 1$, where $u_0 = 1$

(Z) Miscellaneous

(1*) How are the following usually defined?

(a) Whole numbers (b) Natural numbers

Solution

(a) Whole numbers: Integers (including zero and negative integers)

(b) Natural numbers: usually positive integers, but sometimes including zero

fmng.uk

(2#) Prove that $E' \Rightarrow L'$ is equivalent to $L \Rightarrow E$

Solution

Suppose that L is true & E is not true; then $E' \Rightarrow L'$ means that L is not true; ie a contradiction; hence $L \Rightarrow E$

(3#) What is a transcendental number?

Solution

First of all, an 'algebraic number' is one that is the root of a polynomial equation with integer coefficients.

Irrational numbers can be divided into two classes: those that are algebraic numbers and those that aren't. The former are called surds and the latter are called 'transcendental numbers'. The best known examples of transcendental numbers are π and e.

(4#) Find the square roots of $49 - 12\sqrt{5}$

Solution

Let $x^2 = 49 - 12\sqrt{5}$

Consider $x = a + b\sqrt{5}$

Then $a^2 + 2ab\sqrt{5} + 5b^2 = 49 - 12\sqrt{5}$

Let $a^2 + 5b^2 = 49$ & 2ab = -12

[a variation on Equating Coefficients]

Looking for integer solutions, we see that either

a = 2 & b = -3 or a = -2 & b = 3 work.

fmng.uk

(5#) Show that
$$\sum_{r=0}^{n} {n \choose r} = 2^{n}$$

Solution

Method 1: Consider $(1 + 1)^n$

Method 2: Pascal's triangle

The sum of each row is twice the sum of the previous one.

eg
$$1 + 5 + 10 + 10 + 5 + 1$$

= $(1 + 10 + 5)[alternate terms] + (5 + 10 + 1)$
= $2(1 + 10 + 5) = 2(1 + [4 + 6] + [4 + 1])$
& $1 + 6 + 15 + 20 + 15 + 6 + 1$
= $(1 + 15 + 15 + 1) + (6 + 20 + 6)$
= $(1 + [5 + 10] + [10 + 5] + 1)$
+ $([1 + 5] + [10 + 10] + [5 + 1])$

Method 3: Counting ways of selecting any number of items

1st counting method: $\sum_{r=0}^{n} \binom{n}{r}$

2nd counting method: For each object, there are 2 choices: include or exclude; giving 2^n

[Note: 1 way of choosing no objects is included in the total.]

Method 4: Induction

If true for n = k, so that $\sum_{r=0}^{k} \binom{k}{r} = 2^{k}$, then $\sum_{r=0}^{k+1} \binom{k+1}{r} = \binom{k+1}{0} + \{\sum_{r=1}^{k} \binom{k+1}{r}\} + \binom{k+1}{k+1}$ $= 1 + \sum_{r=1}^{k} \{\binom{k}{r-1} + \binom{k}{r}\} + 1$

fmng.uk

$$= 1 + \{\sum_{r=1}^{k-1} \binom{k}{r-1}\} + [\{\sum_{r=0}^{k} \binom{k}{r}\} - \binom{k}{0}] + 1$$

$$= 1 + \{\sum_{R=0}^{k-1} \binom{k}{R}\} + [2^{k} - 1] + 1$$

$$= 1 + \{\sum_{R=0}^{k} \binom{k}{R}\} - \binom{k}{k} + 2^{k}$$

$$= 1 + 2^{k} - 1 + 2^{k}$$

$$= 2^{k+1}$$