# **Proof** (4 pages; 16/1/23)

## (1) If and only if

Example: A quadratic equation has no real roots (*A*) if and only if its discriminant is negative (*B*).

We can then write the following (true) statements:

 $A \Leftrightarrow B$  (*A* is true **if and only if** *B* is true)

 $A \leftarrow B$  (*A* is true **if** *B* is true, or *B* is a sufficient condition for *A*)

 $A \Rightarrow B$  (*A* is true **only if** *B* is true, or *B* is a necessary condition for *A*)

- (2)  $A \Leftrightarrow B$  can be read in the following ways:
- (a) "A implies, and is implied by, B"
- (b) "*A* is true if and only if *B* is true" (abbreviated to "*A* iff *B*")
- (c) "*A* is a necessary and sufficient condition for *B*"

(or alternatively "*B* is a necessary and sufficient condition for *A*")

But note that the "implies" part of (a) corresponds to the "only if" part of (b), and to the "sufficient" part of (c); ie (b) and (c) are the wrong way round, compared with (a).

#### Notes

(i)  $A \Rightarrow B$  is sometimes read as "If A then B"

(ii)  $A \leftarrow B$  (or  $B \Rightarrow A$ ) is sometimes read as "A if B"

(iii)  $A \Rightarrow B$  (or  $B \leftarrow A$ ) is sometimes read as A only if B

#### (3) Methods of proof of $A \Leftrightarrow B$

In some situations, it is possible to produce a chain of clearly equivalent statements, such as:  $A \Leftrightarrow X \Leftrightarrow Y \Leftrightarrow B$ . In others it may be necessary to prove separately that  $A \Rightarrow B$  and  $B \Rightarrow A$ .

As an alternative to proving that  $B \Rightarrow A$ , we can instead prove that  $A' \Rightarrow B'$ . To show that  $A' \Rightarrow B'$  is equivalent to  $B \Rightarrow A$ :

If *B* is true, suppose that *A* is not true. Then, as  $A' \Rightarrow B'$ , there is a contradiction, as *B* is true. So *A* must be true, and hence  $B \Rightarrow A$ .

 $[A' \Rightarrow B']$  is known as a 'proof by contrapositive']

(4) Venn diagram interpretation



 $A \Leftrightarrow B$  means that the gap between A and B is an empty set (ie there are no events represented by this gap)

 $A \Rightarrow B$  means A is contained in B

 $A' \Rightarrow B'$  means if an event is outside of A, then it has to be outside of B

Together, these mean that the gap between *A* and *B* is an empty set.

Also, consider the following non-mathematical example: suppose that *A* is "Lives in London", and *B* is "Lives in England".

Then  $A \Rightarrow B$ , but  $B \Rightarrow A$ . Also  $A' \Rightarrow B'$ 

### (5) Examples

(a) Let *C* be the event that two triangles are congruent, and let *S* be the event that they are similar. Then  $C \Rightarrow S$ , but  $S \neq C$ .

(b) If *n* is a positive integer, and  $n^2$  is odd (*A*), prove that *n* is odd (*B*). [Result to prove:  $A \Rightarrow B$ ]

### Solution

Method 1: Proof by contradiction

Suppose that *n* is even. Then n = 2m, for some positive integer *m*.

But then  $n^2 = (2m)^2 = 4m^2$ , which is divisible by 2, and hence even. This contradicts the fact that  $n^2$  is odd, and so *n* must be odd.

Method 2: Using contrapositive

To prove that  $B' \Rightarrow A'$ :

Suppose that *n* is even. Then (as before)  $n^2$  is even, so that *A*' holds.

(c) Let A be the statement: The transformation represented by the 2  $\times$  2 matrix <u>A</u> has a line of invariant points that does not pass through the Origin;

let B be the statement:  $\underline{A} = \underline{I}$  (for 2 × 2 matrices)

It can be shown that  $A \Leftrightarrow B$ 

 $[B \Rightarrow A \text{ follows from the fact that every point is invariant for the identity transformation; for a proof that <math>A \Rightarrow B$ , see sol'n to STEP 2019, P3, Q3(i)]

(6) Consider the following (unsatisfactory) proof:

"To show that  $tan\theta + cot\theta \equiv sec\theta cosec\theta$  [A]:

 $tan\theta + cot\theta \equiv sec\theta cosec\theta \Rightarrow tan\theta + cot\theta - sec\theta cosec\theta \equiv 0$ 

$$\Rightarrow \frac{\sin^2\theta + \cos^2\theta - 1}{\cos\theta \sin\theta} = 0$$

 $\Rightarrow 0 = 0$  [B] ( $cos\theta sin\theta \neq 0$ , as  $sec\theta \& cosec\theta$  are assumed to be defined, so that  $cos\theta \& sin\theta$  are both non-zero)"

This only shows that  $[A] \Rightarrow [B]$ , whereas we want to show that  $[B] \Rightarrow [A]$ . The proof can be salvaged by replacing  $\Rightarrow$  by  $\Leftrightarrow$  (as equivalence is clearly true at each stage), though the use of

"0 = 0" isn't usually thought to be that elegant. We would still need to make it clear that we had shown that [B]  $\Rightarrow$  [A].

(7) Converse, Contrapositive and Inverse

(i) The converse of  $X \Rightarrow Y$  is  $Y \Rightarrow X$  (or  $X \leftarrow Y$ )

(ii) The contrapositive of  $X \Rightarrow Y$  is  $Y' \Rightarrow X'$ . This is mathematically equivalent to  $X \Rightarrow Y$ .

(iii) The inverse of  $X \Rightarrow Y$  is  $X' \Rightarrow Y'$ . This is mathematically equivalent to  $Y \Rightarrow X$  (ie the converse of  $X \Rightarrow Y$ ).