(1) If and only if

Example: A quadratic equation has no real roots (A) if and only if its discriminant is negative (B).

We can then write the following (true) statements:
$A \Leftrightarrow B$ (A is true if and only if B is true)
$A \Leftarrow B$ (A is true if B is true, or B is a sufficient condition for A)
$A \Rightarrow B$ (A is true only if B is true, or B is a necessary condition for A)
(2) $A \Leftrightarrow B$ can be read in the following ways:
(a) " A implies, and is implied by, B "
(b) " A is true if and only if B is true" (abbreviated to " A iff B ")
(c) " A is a necessary and sufficient condition for B " (or alternatively " B is a necessary and sufficient condition for A ") But note that the "implies" part of (a) corresponds to the "only if" part of (b), and to the "sufficient" part of (c); ie (b) and (c) are the wrong way round, compared with (a).

Notes
(i) $A \Rightarrow B$ is sometimes read as "If A then B "
(ii) $A \Leftarrow B$ (or $B \Rightarrow A$) is sometimes read as " A if B "
(iii) $A \Rightarrow B$ (or $B \Leftarrow A$) is sometimes read as A only if B
(3) Methods of proof of $A \Leftrightarrow B$

In some situations, it is possible to produce a chain of clearly equivalent statements, such as: $A \Leftrightarrow X \Leftrightarrow Y \Leftrightarrow B$. In others it may be necessary to prove separately that $A \Rightarrow B$ and $B \Rightarrow A$.

As an alternative to proving that $B \Rightarrow A$, we can instead prove that $A^{\prime} \Rightarrow B^{\prime}$. To show that $A^{\prime} \Rightarrow B^{\prime}$ is equivalent to $B \Rightarrow A$:

If B is true, suppose that A is not true. Then, as $A^{\prime} \Rightarrow B^{\prime}$, there is a contradiction, as B is true. So A must be true, and hence $B \Rightarrow A$.
[$A^{\prime} \Rightarrow B^{\prime}$ is known as a 'proof by contrapositive']
(4) Venn diagram interpretation

$A \Leftrightarrow B$ means that the gap between A and B is an empty set (ie there are no events represented by this gap)
$A \Rightarrow B$ means A is contained in B
$A^{\prime} \Rightarrow B^{\prime}$ means if an event is outside of A, then it has to be outside of B

Together, these mean that the gap between A and B is an empty set.

Also, consider the following non-mathematical example: suppose that A is "Lives in London", and B is "Lives in England".

Then $A \Rightarrow B$, but $B \nRightarrow A$. Also $A^{\prime} \nRightarrow B^{\prime}$
(5) Examples
(a) Let C be the event that two triangles are congruent, and let S be the event that they are similar. Then $C \Rightarrow S$, but $S \nRightarrow C$.
(b) If n is a positive integer, and n^{2} is odd (A), prove that n is odd (B). [Result to prove: $A \Rightarrow B$]

Solution

Method 1: Proof by contradiction
Suppose that n is even. Then $n=2 m$, for some positive integer m.
But then $n^{2}=(2 m)^{2}=4 m^{2}$, which is divisible by 2 , and hence even. This contradicts the fact that n^{2} is odd, and so n must be odd.

Method 2: Using contrapositive
To prove that $B^{\prime} \Rightarrow A^{\prime}$:
Suppose that n is even. Then (as before) n^{2} is even, so that A^{\prime} holds.
(c) Let A be the statement: The transformation represented by the 2×2 matrix \underline{A} has a line of invariant points that does not pass through the Origin;
let B be the statement: $\underline{A}=\underline{I}$ (for 2×2 matrices)
It can be shown that $A \Leftrightarrow B$
[$B \Rightarrow A$ follows from the fact that every point is invariant for the identity transformation; for a proof that $A \Rightarrow B$, see sol'n to STEP 2019, P3, Q3(i)]
(6) Consider the following (unsatisfactory) proof:
"To show that $\tan \theta+\cot \theta \equiv \sec \theta \operatorname{cosec} \theta[\mathrm{A}]:$
$\tan \theta+\cot \theta \equiv \sec \theta \operatorname{cosec} \theta \Rightarrow \tan \theta+\cot \theta-\sec \theta \operatorname{cosec} \theta \equiv 0$
$\Rightarrow \frac{\sin ^{2} \theta+\cos ^{2} \theta-1}{\cos \theta \sin \theta}=0$
$\Rightarrow 0=0[\mathrm{~B}](\cos \theta \sin \theta \neq 0$, as $\sec \theta \& \operatorname{cosec} \theta$ are assumed to be defined, so that $\cos \theta \& \sin \theta$ are both non-zero)"

This only shows that $[\mathrm{A}] \Rightarrow[\mathrm{B}]$, whereas we want to show that $[\mathrm{B}]$ $\Rightarrow[A]$. The proof can be salvaged by replacing \Rightarrow by \Leftrightarrow (as equivalence is clearly true at each stage), though the use of " $0=0$ " isn't usually thought to be that elegant. We would still need to make it clear that we had shown that $[\mathrm{B}] \Rightarrow[\mathrm{A}]$.
(7) Converse, Contrapositive and Inverse
(i) The converse of $X \Rightarrow Y$ is $Y \Rightarrow \mathrm{X}$ (or $X \Leftarrow Y$)
(ii) The contrapositive of $X \Rightarrow Y$ is $Y^{\prime} \Rightarrow \mathrm{X}^{\prime}$. This is mathematically equivalent to $X \Rightarrow Y$.
(iii) The inverse of $X \Rightarrow Y$ is $X^{\prime} \Rightarrow Y^{\prime}$. This is mathematically equivalent to $Y \Rightarrow \mathrm{X}$ (ie the converse of $X \Rightarrow Y$).

